3,220 research outputs found

    Pathogen burden, inflammation, proliferation and apoptosis in human in-stent restenosis - Tissue characteristics compared to primary atherosclerosis

    Get PDF
    Pathogenic events leading to in-stent restenosis (ISR) are still incompletely understood. Among others, inflammation, immune reactions, deregulated cell death and growth have been suggested. Therefore, atherectomy probes from 21 patients with symptomatic ISR were analyzed by immunohistochemistry for pathogen burden and compared to primary target lesions from 20 stable angina patients. While cytomegalovirus, herpes simplex virus, Epstein-Barr virus and Helicobacter pylori were not found in ISR, acute and/or persistent chlamydial infection were present in 6/21 of these lesions (29%). Expression of human heat shock protein 60 was found in 8/21 of probes (38%). Indicated by distinct signals of CD68, CD40 and CRP, inflammation was present in 5/21 (24%), 3/21 (14%) and 2/21 (10%) of ISR cases. Cell density of ISR was significantly higher than that of primary lesions ( 977 +/- 315 vs. 431 +/- 148 cells/mm(2); p < 0.001). There was no replicating cell as shown by Ki67 or PCNA. TUNEL+ cells indicating apoptosis were seen in 6/21 of ISR specimens (29%). Quantitative analysis revealed lower expression levels for each intimal determinant in ISR compared to primary atheroma (all p < 0.05). In summary, human ISR at the time of clinical presentation is characterized by low frequency of pathogen burden and inflammation, but pronounced hypercellularity, low apoptosis and absence of proliferation. Copyright (C) 2004 S. Karger AG, Basel

    The effects of constructivist learning environments: A commentary

    Get PDF
    This special issue on the effects of constructivist learning environments is based on a symposium organized during the last annual meeting of the American Educational Research Association in Chicago. The studies in this issue not only provide an overview of the multitude of forms a constructivist learning environment can take, they also provide the reader with an overview of recent advances in this domain of research. The present discussion article provides a critical reflection on the studies in this special issue and tries to identify their prospects and limitations

    Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals

    Full text link
    Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the embedded magnetic atoms. In this respect, colloidal nanocrystal heterostructures provide great flexibility via growth-controlled `engineering' of electron and hole wavefunctions within individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d exchange interaction between electron-hole excitations (excitons) and paramagnetic manganese ions using `inverted' core-shell nanocrystals composed of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe. Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the band-edge exciton that, surprisingly, are tunable in both magnitude and sign. Effective exciton g-factors are controllably tuned from -200 to +30 solely by increasing the CdSe shell thickness, demonstrating that strong quantum confinement and wavefunction engineering in heterostructured nanocrystal materials can be utilized to manipulate carrier-Mn wavefunction overlap and the sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf

    Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation

    Get PDF
    FUNDING AND DISCLOSURE The research was funded by Wellcome Trust (WT098012) to LKH; and National Institute of Health (DK056731) and the Marilyn H. Vincent Foundation to MGM. The University of Michigan Transgenic Core facility is partially supported by the NIH-funded University of Michigan Center for Gastrointestinal Research (DK034933). The remaining authors declare no conflict of interest. ACKNOWLEDGMENTS We thank Dr Celine Cansell, Ms Raffaella Chianese and the staff of the Medical Research Facility for technical assistance. We thank Dr Vladimir Orduña for the scientific advice and technical assistance.Peer reviewedPublisher PD

    Visualization of nano-plasmons in graphene

    Full text link
    We study localized plasmons at the nanoscale (nano-plasmons) in graphene. The collective excitations of induced charge density modulations in graphene are drastically changed in the vicinity of a single impurity compared to graphene's bulk behavior. The dispersion of nano-plasmons depends on the number of electrons and the sign, strength and size of the impurity potential. Due to this rich parameter space the calculated dispersions are intrinsically multidimensional requiring an advanced visualization tool for their efficient analysis, which can be achieved with parallel rendering. To overcome the problem of analyzing thousands of very complex spatial patterns of nano-plasmonic modes, we take a combined visual and quantitative approach to investigate the excitations on the two-dimensional graphene lattice. Our visual and quantitative analysis shows that impurities trigger the formation of localized plasmonic excitations of various symmetries. We visually identify dipolar, quadrupolar and radial modes, and quantify the spatial distributions of induced charges.Comment: 14 pages, 9 figure
    corecore