20 research outputs found

    Implementing a new rubber plant functional type in the Community Land Model (CLM5) improves accuracy of carbon and water flux estimation

    Get PDF
    Rubber plantations are an economically viable land-use type that occupies large swathes of land in Southeast Asia that have undergone conversion from native forest to intensive plantation forestry. Such land-use change has a strong impact on carbon, energy, and water fluxes in ecosystems, and uncertainties exist in the modeling of future land-use change impacts on these fluxes due to the scarcity of measured data and poor representation of key biogeochemical processes. In this current modeling effort, we utilized the Community Land Model Version 5 (CLM5) to simulate a rubber plant functional type (PFT) by comparing the baseline parameter values of tropical evergreen PFT and tropical deciduous PFT with a newly developed rubber PFT (focused on the parameterization and modification of phenology and allocation processes) based on site-level observations of a rubber clone in Indonesia. We found that the baseline tropical evergreen and baseline tropical deciduous functions and parameterizations in CLM5 poorly simulate the leaf area index, carbon dynamics, and water fluxes of rubber plantations. The newly developed rubber PFT and parametrizations (CLM-rubber) showed that daylength could be used as a universal trigger for defoliation and refoliation of rubber plantations. CLM-rubber was able to predict seasonal patterns of latex yield reasonably well, despite highly variable tapping periods across Southeast Asia. Further, model comparisons indicated that CLM-rubber can simulate carbon and energy fluxes similar to the existing rubber model simulations available in the literature. Our modeling results indicate that CLM-rubber can be applied in Southeast Asia to examine variations in carbon and water fluxes for rubber plantations and assess how rubber-related land-use changes in the tropics feedback to climate through carbon and water cycling

    Forest history, peatland development and mid- to late-Holocene environmental change in the southern taiga forest of central European Russia

    Get PDF
    Understanding the long-term ecological dynamics of boreal forests is essential for assessment of the possible responses and feedbacks of forest ecosystems to climate change. New data on past forest dynamics and peatland development were obtained from a peat sequence in the southern Valdai Hills (European Russia) based on pollen, plant macrofossil, micro-charcoal, peat humification, and testate amoeba analyses. In terms of vegetation history, the results demonstrate a dominance of broadleaved forests in the study area from 7000 4000 cal yr BP. Picea was initially a minor component of this forest but increased in cover rapidly with climatic cooling beginning at 4000 cal yr BP, becoming the dominant species. Broadleaved species persisted until 900 cal yr, with evidence for intensified felling and forest management over recent centuries. Over the last four hundred years there is evidence for widespread paludification and the establishment of Picea-Sphagnum forests. These data demonstrate how modern wet woodlands have been shaped by a combination of climatic and anthropogenic factors over several millennia. The results also demonstrate the value of a multiproxy approach in understanding long-term forest ecology

    Detection of Geocryological Conditions in Boreal Landscapes of the Southern Cryolithozone Using Thermal Infrared Remote Sensing Data: A Case Study of the Northern Part of the Yenisei Ridge

    No full text
    This paper discusses the potential of using infrared remote sensing data to determine geocryological conditions in the northern part of the Yenisei Ridge in Russia. Landsat-8 thermal infrared images and land surface data were used for our analysis. The obtained thermal characteristics were compared with vegetation indices calculated for the period of active vegetation growth along several surface transects. Surface observations included geobotanical descriptions, phytomass estimations, measurements of thickness of the seasonally thawed layer, and visual identification of different effects of permafrost on the components of the taiga landscape. The obtained surface temperatures differed depending of forest type due to their bio-productivity characteristics on sporadic permafrost as the most important factor of forest growth conditions within the southern part of the cryolithozone. The differences in the thermal characteristics are due to varying degree of permafrost influence on boreal vegetation growth. The surface temperature was used as indicator to quantify the relationship between the latent heat and the sensible heat fluxes for the corresponding landscape. The areas with higher surface temperatures were usually characterized by higher sensible heat flux due to lower evapotranspiration of the plant canopy. The forest types with the highest evapotranspiration had usually the lowest surface temperatures. Such forest types are also the most fire-resistant systems, and have the highest water-discharge potential. This is characteristic of the forests under the lowest impact of permafrost (thawed soils or the presence of the permafrost layer at lower depths). Such types of forests have higher ecosystem service potential (e.g., fire-resistance and stock formation)

    Mathematical Modeling of Vegetation Heterogeneity and Complex Topography Effects on Turbulent Exchange of GHG within the Atmospheric Surface Layer

    No full text
    The local-scale 2D and 3D models of greenhouse gases (GHG) exchange between a non-uniform land surface and the atmosphere were developed. They are based on solution of the system of averaged Navier-Stokes, continuity and diffusion-advection equations. For numerical solution of the differential equations the stable finite-difference schemes were suggested. The models were applied to derive effects of complex topography and vegetation heterogeneity on 2D-3D air flow patterns, as well as on CO2 exchange within the atmospheric surface layer. Several numerical experiments were also provided to describe the air-flow re-establishing after its interaction with some obstacle (e.g., forest edge). Quantitative criteria for selection of the experimental sites for continuous eddy covariance flux measurements characterized by minimum effects of horizontal advection on measured fluxes were suggested

    Wildfire Dynamics along a North-Central Siberian Latitudinal Transect Assessed Using Landsat Imagery

    No full text
    The history of wildfires along a latitudinal transect from forest–tundra to middle taiga in North-Central Siberia was reconstructed for the period from 1985 to 2020 using Landsat imagery. The transect passed through four key regions (75 × 75 km2) with different climate and landscape conditions that allowed us to evaluate regional wildfire dynamics as well as estimate differences in post-fire forest recovery. The Level-2A Landsat data (TM, ETM+, and OLI) were used to derive: (i) burned area (BA) locations, (ii) timing of wildfire occurrence (date, month, or season), (iii) fire severity, and (iv) trends in post-fire vegetation recovery. We used pre-selected and pre-processed scenes suitable for BA mapping taken within four consecutive time intervals covering the entire period of data analysis (1985–2020). Pre- and post-fire dynamics of forest vegetation were described using spectral indices, i.e., NBR and NDVI. We found that during the last three decades, the maximum BA occurred in the southernmost Vanavara region where ≈58% of the area burned. Total BA gradually decreased to the northwest with a minimum in the Igarka region (≈1%). Nearly half of these BAs appeared between summer 2013 and autumn 2020 due to higher frequency of hot and dry weather. The most severe wildfires were detected in the most northeastern Tura region. Analysis of NDVI and NBR dynamics showed that the mean period of post-fire vegetation recovery ranged between 20 and 25 years. The time of vegetation recovery at BAs with repeat wildfires and high severity was significantly longer

    Temporal and Spatial Variability of Dryness Conditions in Kazakhstan during 1979–2021 Based on Reanalysis Data

    No full text
    The spatial and temporal variability of dryness conditions in the territory of Kazakhstan during the period 1979–2021 was investigated using monthly and hourly ERA5 reanalysis data on air temperature and precipitation as well as various aridity indices. A large part of the territory is characterized by the air temperature increase in summer and spring, as well as precipitation reduction, especially during the summer months. It was shown that the end of the 20th century (1979–2000) and the beginning of the 21st century (2001–2021) are characterized by different trends in air temperature and precipitation. All applied indices, i.e., the Palmer Drought Severity Index (PDSI), the Keetch–Byram Drought Index (KBDI), Standardized Precipitation (SPI) and Standardized Precipitation Evapotranspiration (SPEI), showed increased dryness in most parts of the territory of Kazakhstan. KBDI indicated an increased risk of wildfires, especially in the southwestern and northwestern regions. The hottest and driest areas are situated in the regions that are simultaneously affected by rising temperatures and reduced precipitation in spring and summer. The strongest increase in aridity and fire risk in the southwest and northwest is mainly due to reduced precipitation in the summer. Minimal risks of droughts occur in the northern and central regions, where conditions in the early 21st century became even less favorable for drought formation compared to the late 20th century (increased precipitation in both spring and summer and lower summer temperatures)

    Effect of Natural Forest Fires on Regional Weather Conditions in Siberia

    No full text
    Effects of forest fires on regional weather conditions were analyzed for Central and Eastern Siberia after warm and dry weather conditions in summer 2019 using COSMO-Ru (COnsortium for Small-scale MOdeling; Ru—Russia) and COSMO-RuART (ART—Aerosols and Reactive Trace gases) model systems. Four series of numerical experiments were conducted (one control experiment and three forest fire experiments assuming total vegetation destruction within the burned areas) to evaluate possible effects of forest fires on surface albedo and vegetation properties as well as their influence on air chemistry and aerosol concentration in the atmosphere. The modeling results showed significant influence of forest fires on regional weather conditions that occurred over large areas situated even away from burnt regions. Decreased surface albedo and reduced latent heat fluxes due to fire-induced destruction of forest cover lead to higher near-surface air temperature and lower air humidity in both burned and surrounding unburned forest areas. On the other hand, reduced incoming solar radiation due to smoke from forest fire plumes decreased land surface temperatures and increased thermal atmospheric stability resulting in reduced regional precipitation

    Temporal and Spatial Variability of Dryness Conditions in Kazakhstan during 1979–2021 Based on Reanalysis Data

    No full text
    The spatial and temporal variability of dryness conditions in the territory of Kazakhstan during the period 1979–2021 was investigated using monthly and hourly ERA5 reanalysis data on air temperature and precipitation as well as various aridity indices. A large part of the territory is characterized by the air temperature increase in summer and spring, as well as precipitation reduction, especially during the summer months. It was shown that the end of the 20th century (1979–2000) and the beginning of the 21st century (2001–2021) are characterized by different trends in air temperature and precipitation. All applied indices, i.e., the Palmer Drought Severity Index (PDSI), the Keetch–Byram Drought Index (KBDI), Standardized Precipitation (SPI) and Standardized Precipitation Evapotranspiration (SPEI), showed increased dryness in most parts of the territory of Kazakhstan. KBDI indicated an increased risk of wildfires, especially in the southwestern and northwestern regions. The hottest and driest areas are situated in the regions that are simultaneously affected by rising temperatures and reduced precipitation in spring and summer. The strongest increase in aridity and fire risk in the southwest and northwest is mainly due to reduced precipitation in the summer. Minimal risks of droughts occur in the northern and central regions, where conditions in the early 21st century became even less favorable for drought formation compared to the late 20th century (increased precipitation in both spring and summer and lower summer temperatures)

    Application of a Three-Dimensional Radiative Transfer Model to Retrieve the Species Composition of a Mixed Forest Stand from Canopy Reflected Radiation

    No full text
    The paper introduces a three-dimensional model to derive the spatial patterns of photosynthetically active radiation (PAR) reflected and absorbed by a non-uniform forest canopy with a multi-species structure, as well as a model algorithm application to retrieve forest canopy composition from reflected PAR measured along some trajectory above the forest stand. This radiative transfer model is based on steady-state transport equations, initially suggested by Ross, and considers the radiative transfer as a function of the structure of individual trees and forest canopy, optical properties of photosynthesizing and non-photosynthesizing parts of the different tree species, soil reflection, and the ratio of incoming direct and diffuse solar radiation. Numerical experiments showed that reflected solar radiation of a typical mixed forest stand consisting of coniferous and deciduous tree species was strongly governed by canopy structure, soil properties and sun elevation. The suggested algorithm based on the developed model allows for retrieving the proportion of different tree species in a mixed forest stand from measured canopy reflection coefficients. The method accuracy strictly depends on the number of points for canopy reflection measurements

    Wildfire Dynamics along a North-Central Siberian Latitudinal Transect Assessed Using Landsat Imagery

    No full text
    The history of wildfires along a latitudinal transect from forest–tundra to middle taiga in North-Central Siberia was reconstructed for the period from 1985 to 2020 using Landsat imagery. The transect passed through four key regions (75 × 75 km2) with different climate and landscape conditions that allowed us to evaluate regional wildfire dynamics as well as estimate differences in post-fire forest recovery. The Level-2A Landsat data (TM, ETM+, and OLI) were used to derive: (i) burned area (BA) locations, (ii) timing of wildfire occurrence (date, month, or season), (iii) fire severity, and (iv) trends in post-fire vegetation recovery. We used pre-selected and pre-processed scenes suitable for BA mapping taken within four consecutive time intervals covering the entire period of data analysis (1985–2020). Pre- and post-fire dynamics of forest vegetation were described using spectral indices, i.e., NBR and NDVI. We found that during the last three decades, the maximum BA occurred in the southernmost Vanavara region where ≈58% of the area burned. Total BA gradually decreased to the northwest with a minimum in the Igarka region (≈1%). Nearly half of these BAs appeared between summer 2013 and autumn 2020 due to higher frequency of hot and dry weather. The most severe wildfires were detected in the most northeastern Tura region. Analysis of NDVI and NBR dynamics showed that the mean period of post-fire vegetation recovery ranged between 20 and 25 years. The time of vegetation recovery at BAs with repeat wildfires and high severity was significantly longer
    corecore