16 research outputs found

    Multipopulation Genetic Algorithm for Simulation of the Crystal Structure from X-Ray Diffraction Data

    Get PDF
    ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΠΏΡƒΠ»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ гСнСтичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ для модСлирования Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ кристалличСской структуры химичСских соСдинСний ΠΈΠ· Π΄Π°Π½Π½Ρ‹Ρ… рСнтгСновской ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠΉ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ. Π˜Π½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ гСнСтичСскиС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… ΡƒΠ·Π»Π°Ρ… Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ кластСра. Π›ΡƒΡ‡ΡˆΠΈΠ΅ структурныС ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΠ· всСх ΡƒΠ·Π»ΠΎΠ² ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ΡΡ локальной ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠΏΠΎΠ»Π½ΠΎΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ структурного Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π½Π° ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌ ΡƒΠ·Π»Π΅. Он управляСт ΠΈΡ… Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ Π² популяции Π½Π° Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ·Π»Π°Ρ…. Π Π°Π±ΠΎΡ‚Π° ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΠΏΡƒΠ»ΡΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° обсуТдаСтся Π½Π° тСстовых структурах с 9-10 нСзависимыми Π°Ρ‚ΠΎΠΌΠ°ΠΌΠΈA multipopulation genetic algorithm for a crystal structure solution from the X-ray powder diffraction data is proposed. Individual genetic algorithms are executed on different units of the computing cluster. The local optimization is performed periodically by the full-profile structure analysis (Rietveld method). The best trial structures are accumulated on the control unit for migration back to the routine compute units. The work of multi-population algorithm is discussed on 3 example of test structures with 9-10 independent atoms. The reliability of the structure search increases in a half order of magnitude more due to migratio

    Possibilities of Neural Network Powder Diffraction Analysis Crystal Structure of Chemical Compounds

    Get PDF
    Some possibilities of using convolutional artificial neural networks (ANN) for powder diffraction structural analysis of crystalline substances have been investigated. First, ANNs are used to classify crystalline systems and space groups according to calculated full-profile diffractograms calculated from the crystal structures of the ICSD database (2017 year). The ICSD database contains 192004 structures, of which 80% was used for in-depth network training, and 20% for independent testing of recognition accuracy. The accuracy of classification by a network of crystalline systems was 87.9%, and that of space groups was 77.2%. Secondly, the ANN is used for a similar classification of structural models generated by the stochastic genetic algorithm in the search processes for triclinic crystal structures of test compound K4SnO4 according to their full-profile diffraction patterns. The classification criterion was the entry of one or several atoms into their crystallographic positions in the structure of a substance. Independent deep network training was performed on 120 thousand structural models of the K4PbO4 triclinic structure generated in several runs of the genetic algorithm. The accuracy of the classification of K4SnO4 structural models exceeded 50%. The results show that deeply trained convolutional ANNs can be effective for classifying crystal structures according to the structural characteristics of their powder diffraction patterns

    Modeling of the Crystal Structure of Platinum Metal’s Complex Compounds by Using Parallel Computing Based on Genetic Algorithms and X-ray Diffraction Data

    Get PDF
    МодСли кристалличСской структуры комплСксных соСдинСний [Pd(CH3NH2)4][PdBr4] (ΠΏΡ€.Π³Ρ€. P4/mnc (128), a=10.6866(7) Γ…, c=6.7262(3) Γ…, V=768.16(10) Γ…3) ΠΈ [Pt(NH3)5Cl]Br3 (ΠΏΡ€. Π³Ρ€. I41/a (88), ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ячСйки a=17.2587(5) Γ…; c=15.1164(3) Γ…, V=4502,61(10) Γ…3) ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΠΏΡƒΠ»ΡΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ гСнСтичСского Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° (ΠœΠŸΠ“Π) ΠΈ Π΄Π°Π½Π½Ρ‹Ρ… рСнтгСновской ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠΉ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ структурного Π°Π½Π°Π»ΠΈΠ·Π° этих соСдинСний ΠΏΠΎ ΠœΠŸΠ“ΠCrystal structure models of complex compounds [Pd(CH3NH2)4][PdBr4] (sp. gr. P4/mnc (128), a=10.6866(7) Γ…, c=6.7262(3) Γ…, V=768.16(10) Γ…3) and [Pt(NH3)5Cl]Br3 (sp. gr. I41/a (88), a=17.2587(5) Γ…; c=15.1164(3) Γ…, V=4502,61(10) Γ…3) has been determined by using the developed multipopulational parallel genetic algorithm (MPGA) and x-ray powder diffraction data. This paper presents the methodology and results of the structural analysis of these compounds obtained by application of the MPG

    Multipopulation Genetic Algorithm for Simulation of the Crystal Structure from X-Ray Diffraction Data

    No full text
    ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΠΏΡƒΠ»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ гСнСтичСский Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ для модСлирования Π°Ρ‚ΠΎΠΌΠ½ΠΎΠΉ кристалличСской структуры химичСских соСдинСний ΠΈΠ· Π΄Π°Π½Π½Ρ‹Ρ… рСнтгСновской ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠΉ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ. Π˜Π½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ гСнСтичСскиС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ΡΡ Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… ΡƒΠ·Π»Π°Ρ… Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ кластСра. Π›ΡƒΡ‡ΡˆΠΈΠ΅ структурныС ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈΠ· всСх ΡƒΠ·Π»ΠΎΠ² ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ΡΡ локальной ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ ΠΏΠΎΠ»Π½ΠΎΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ структурного Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π½Π° ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅ΠΌ ΡƒΠ·Π»Π΅. Он управляСт ΠΈΡ… Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠΉ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ Π² популяции Π½Π° Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ·Π»Π°Ρ…. Π Π°Π±ΠΎΡ‚Π° ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΠΏΡƒΠ»ΡΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° обсуТдаСтся Π½Π° тСстовых структурах с 9-10 нСзависимыми Π°Ρ‚ΠΎΠΌΠ°ΠΌΠΈA multipopulation genetic algorithm for a crystal structure solution from the X-ray powder diffraction data is proposed. Individual genetic algorithms are executed on different units of the computing cluster. The local optimization is performed periodically by the full-profile structure analysis (Rietveld method). The best trial structures are accumulated on the control unit for migration back to the routine compute units. The work of multi-population algorithm is discussed on 3 example of test structures with 9-10 independent atoms. The reliability of the structure search increases in a half order of magnitude more due to migratio

    [Pb2F2](SeO4): a heavier analogue of grandreefite, the first layered fluoride selenate

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°.Co-precipitation of PbF 2 and PbSeO 4 in weakly acidic media results in the formation of [Pb 2 F 2 ](SeO 4 ), the selenate analogue of the naturally occurring mineral grandreefite, [Pb 2 F 2 ](SO 4 ). The new compound is monoclinic, C2/c, a = 14.0784(2) Γ…, b = 4.6267(1) Γ…, c = 8.8628(1) Γ…, Ξ² = 108.98(1)Β°, V = 545.93(1) Γ… 3 . Its structure has been refined from powder data to R B = 1.55%. From thermal studies, it is established that the compound is stable in air up to about 300 Β°C, after which it gradually converts into a single phase with composition [Pb 2 O](SeO 4 ), space group C2/m, and lattice parameters a = 14.0332(1) Γ…, b = 5.7532(1) Γ…, c = 7.2113(1) Γ…, Ξ² = 115.07(1)Β°, V = 527.37(1) Γ… 3 . It is the selenate analogue of lanarkite, [Pb 2 O](SO 4 ), and phoenicochroite, [Pb 2 O](CrO 4 ), and its crystal structure was refined to R B = 1.21%. The formation of a single decomposition product upon heating in air suggests that this happens by a thermal hydrolysis mechanism, i.e., Pb 2 F 2 SeO 4 + H 2 O (vapor) β†’ Pb 2 OSeO 4 + 2HF↑

    [Pb2F2](SeO4): a heavier analogue of grandreefite, the first layered fluoride selenate

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°.Co-precipitation of PbF 2 and PbSeO 4 in weakly acidic media results in the formation of [Pb 2 F 2 ](SeO 4 ), the selenate analogue of the naturally occurring mineral grandreefite, [Pb 2 F 2 ](SO 4 ). The new compound is monoclinic, C2/c, a = 14.0784(2) Γ…, b = 4.6267(1) Γ…, c = 8.8628(1) Γ…, Ξ² = 108.98(1)Β°, V = 545.93(1) Γ… 3 . Its structure has been refined from powder data to R B = 1.55%. From thermal studies, it is established that the compound is stable in air up to about 300 Β°C, after which it gradually converts into a single phase with composition [Pb 2 O](SeO 4 ), space group C2/m, and lattice parameters a = 14.0332(1) Γ…, b = 5.7532(1) Γ…, c = 7.2113(1) Γ…, Ξ² = 115.07(1)Β°, V = 527.37(1) Γ… 3 . It is the selenate analogue of lanarkite, [Pb 2 O](SO 4 ), and phoenicochroite, [Pb 2 O](CrO 4 ), and its crystal structure was refined to R B = 1.21%. The formation of a single decomposition product upon heating in air suggests that this happens by a thermal hydrolysis mechanism, i.e., Pb 2 F 2 SeO 4 + H 2 O (vapor) β†’ Pb 2 OSeO 4 + 2HF↑

    Pb6O5(NO3)2: A Nonlinear Optical Oxynitrate Structurally Based on Lead Oxide Framework

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°.A high second harmonic generation response is demonstrated by a Pb6O5(NO3)2 lead oxynitrate whose identity was verified upon reinvestigation of the PbO–Pb(NO3)2 system. Its crystal structure exhibits a unique cationic [Pb6O5]2+ framework hosting orientationally ordered NO3– triangles in the channels. Easy preparation and high thermal stability (until ∼500 Β°C in air) suggest it to be a new promising NLO material

    Possibilities of Neural Network Powder Diffraction Analysis Crystal Structure of Chemical Compounds

    Get PDF
    Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ возмоТности примСнСния свСрточных искусствСнных Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… сСтСй (ИНБ) для ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ структурного Π°Π½Π°Π»ΠΈΠ·Π° кристалличСских вСщСств. Π’ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, ИНБ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Ρ‹ для классификации кристалличСских систСм ΠΈ пространствСнных Π³Ρ€ΡƒΠΏΠΏ симмСтрии ΠΏΠΎ расчСтным ΠΏΠΎΠ»Π½ΠΎΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌ, вычислСнным ΠΈΠ· кристалличСских структур Π±Π°Π·Ρ‹ Π΄Π°Π½Π½Ρ‹Ρ… ICSD 2017 Π³. Π‘Π°Π·Π° ICSD содСрТит 192004 структуры, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… 80 % использовалось для Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ обучСния сСти, Π° 20 % для нСзависимого тСстирования точности распознавания. Π’ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ классификации ΡΠ΅Ρ‚ΡŒΡŽ кристалличСских систСм составила 87,9 %, Π° пространствСнных Π³Ρ€ΡƒΠΏΠΏ – 77,2 %. Π’ΠΎ- Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, другая ИНБ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° для классификации структурных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, сгСнСрированных стохастичСским гСнСтичСским Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠΌ Π² процСссах поиска кристалличСских структур тСстовых Ρ‚Ρ€ΠΈΠΊΠ»ΠΈΠ½Π½Ρ‹Ρ… соСдинСний K4SnO4 ΠΈ K4SnO4, ΠΏΠΎ ΠΈΡ… ΠΏΠΎΠ»Π½ΠΎΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌ. Π‘Ρ‹Π»ΠΎ сгСнСрировано ΠΎΠΊΠΎΠ»ΠΎ 150 тысяч структурных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· этих структур. Π“Π»ΡƒΠ±ΠΎΠΊΠΎΠ΅ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ сСти Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΎΡΡŒ Π½Π° Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°Ρ… структурных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ K4PbO4. ΠžΠ±ΡƒΡ‡Π΅Π½Π½Π°Ρ ΡΠ΅Ρ‚ΡŒ Π±Ρ‹Π»Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° для классификации структурных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ K4SnO4 ΠΏΠΎ ΠΈΡ… Π΄ΠΈΡ„Ρ€Π°ΠΊΡ‚ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌ. ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅ΠΌ классификации являлось ΠΏΠΎΠΏΠ°Π΄Π°Π½ΠΈΠ΅ Π°Ρ‚ΠΎΠΌΠΎΠ² Π² ΠΈΡ… кристаллографичСскиС ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π² структурС. Π’ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ классификации Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΉ Π°Ρ‚ΠΎΠΌΠΎΠ² Π² структурных модСлях K4SnO4 прСвысила 50 %.Some possibilities of using convolutional artificial neural networks (ANN) for powder diffraction structural analysis of crystalline substances have been investigated. First, ANNs are used to classify crystalline systems and space groups according to calculated full-profile diffractograms calculated from the crystal structures of the ICSD database (2017 year). The ICSD database contains 192004 structures, of which 80% was used for in-depth network training, and 20% for independent testing of recognition accuracy. The accuracy of classification by a network of crystalline systems was 87.9%, and that of space groups was 77.2%. Secondly, the ANN is used for a similar classification of structural models generated by the stochastic genetic algorithm in the search processes for triclinic crystal structures of test compound K4SnO4 according to their full-profile diffraction patterns. The classification criterion was the entry of one or several atoms into their crystallographic positions in the structure of a substance. Independent deep network training was performed on 120 thousand structural models of the K4PbO4 triclinic structure generated in several runs of the genetic algorithm. The accuracy of the classification of K4SnO4 structural models exceeded 50%. The results show that deeply trained convolutional ANNs can be effective for classifying crystal structures according to the structural characteristics of their powder diffraction pattern

    Synthesis, crystal structure, spectroscopic properties, and thermal behavior of rare-earth oxide selenates, Ln2O2SeO4 (Ln = La, Pr, Nd): The new perspectives of solid-state double-exchange synthesis

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°.Three rare-earth oxide selenates Ln2O2SeO4 (Ln = La, Pr, Nd) have been prepared via double-exchange solid-state reactions between respective LnOCl oxyhalides and potassium selenate. This approach succeeded to obtain singlephase specimens of La2O2SeO4 and Nd2O2SeO4, previously known as transients upon thermal decomposition of the corresponding selenates, as well as a new compound Pr2O2SeO4. Refinement of their crystal structures from powder X-ray diffraction data confirmed previous attributions to the grandreefite (Pb2F2SO4) structure type observed also for the Ln2O2SO4 oxide sulfates. According to polythermic X-ray studies, La2O2SeO4 is stable until at least 700 C. All compounds were characterized by infrared and X-ray photoelectron spectroscopy

    Modeling of the Crystal Structure of Platinum Metal’s Complex Compounds by Using Parallel Computing Based on Genetic Algorithms and X-ray Diffraction Data

    No full text
    МодСли кристалличСской структуры комплСксных соСдинСний [Pd(CH3NH2)4][PdBr4] (ΠΏΡ€.Π³Ρ€. P4/mnc (128), a=10.6866(7) Γ…, c=6.7262(3) Γ…, V=768.16(10) Γ…3) ΠΈ [Pt(NH3)5Cl]Br3 (ΠΏΡ€. Π³Ρ€. I41/a (88), ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ячСйки a=17.2587(5) Γ…; c=15.1164(3) Γ…, V=4502,61(10) Γ…3) ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠΎΠΏΡƒΠ»ΡΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ гСнСтичСского Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° (ΠœΠŸΠ“Π) ΠΈ Π΄Π°Π½Π½Ρ‹Ρ… рСнтгСновской ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠΉ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ структурного Π°Π½Π°Π»ΠΈΠ·Π° этих соСдинСний ΠΏΠΎ ΠœΠŸΠ“ΠCrystal structure models of complex compounds [Pd(CH3NH2)4][PdBr4] (sp. gr. P4/mnc (128), a=10.6866(7) Γ…, c=6.7262(3) Γ…, V=768.16(10) Γ…3) and [Pt(NH3)5Cl]Br3 (sp. gr. I41/a (88), a=17.2587(5) Γ…; c=15.1164(3) Γ…, V=4502,61(10) Γ…3) has been determined by using the developed multipopulational parallel genetic algorithm (MPGA) and x-ray powder diffraction data. This paper presents the methodology and results of the structural analysis of these compounds obtained by application of the MPG
    corecore