43 research outputs found

    Noncomputability Arising In Dynamical Triangulation Model Of Four-Dimensional Quantum Gravity

    Full text link
    Computations in Dynamical Triangulation Models of Four-Dimensional Quantum Gravity involve weighted averaging over sets of all distinct triangulations of compact four-dimensional manifolds. In order to be able to perform such computations one needs an algorithm which for any given NN and a given compact four-dimensional manifold MM constructs all possible triangulations of MM with N\leq N simplices. Our first result is that such algorithm does not exist. Then we discuss recursion-theoretic limitations of any algorithm designed to perform approximate calculations of sums over all possible triangulations of a compact four-dimensional manifold.Comment: 8 Pages, LaTex, PUPT-132

    Aluminothermic Synthesis of Dispersed Electrides Based on Mayenite: XRD and EPR Study

    No full text
    The evolution of the structure and the phase composition of a dispersed mayenite at its interaction with metallic aluminum was studied in a temperature range from 900 to 1400 °C in both argon and air atmospheres. The aluminum loading was varied from 0 to 50 wt%. It was found that the addition of aluminum significantly affects the stability of the mayenite and other calcium aluminate phases within the studied temperature range. The formation of the electride state registered by the appearance of a characteristic electron paramagnetic resonance (EPR) signal from F+-like centers (g~1.994) in an argon atmosphere was shown to take place already at 1150 °C due to an aluminothermic reduction of this material. The super-narrow (Hp-p < 0.5 G) EPR spectra from F+-like centers, which were recently observed for the core–shell structures of the C12A7@C type only, were registered for mayenite for the first time. The results obtained in the present study testify firstly towards the possibility of significantly diminishing the temperatures required for the formation of the electride state in such systems and secondly towards the ability to stabilize the size of small electride nanoparticles within the synthesized calcium aluminate matrix

    Arctic Stratosphere Circulation Changes in the 21st Century in Simulations of INM CM5

    No full text
    Simulations of Institute of Numerical Mathematics (INM) coupled climate model 5th version for the period from 2015 to 2100 under moderate (SSP2-4.5) and severe (SSP5-8.5) scenarios of greenhouse gases growth are analyzed to investigate changes of Arctic polar stratospheric vortex, planetary wave propagation, Sudden Stratospheric Warming frequency, Final Warming dates, and meridional circulation. Strengthening of wave activity propagation and a stationary planetary wave number 1 in the middle and upper stratosphere, acceleration of meridional circulation, an increase of winter mean polar stratospheric volume (Vpsc) and strengthening of Arctic stratosphere interannual variability after the middle of 21st century, especially under a severe scenario, were revealed. March monthly values of Vpsc in some winters could be about two times more than observed ones in the Arctic stratosphere in the spring of 2011 and 2020, which in turn could lead to large ozone layer destruction. Composite analysis shows that “warm” winters with the least winter mean Vpsc values are characterized by strengthening of wave activity propagation from the troposphere into the stratosphere in December but weaker propagation in January–February in comparison with winters having the largest Vpsc values

    Arctic Stratosphere Circulation Changes in the 21st Century in Simulations of INM CM5

    No full text
    Simulations of Institute of Numerical Mathematics (INM) coupled climate model 5th version for the period from 2015 to 2100 under moderate (SSP2-4.5) and severe (SSP5-8.5) scenarios of greenhouse gases growth are analyzed to investigate changes of Arctic polar stratospheric vortex, planetary wave propagation, Sudden Stratospheric Warming frequency, Final Warming dates, and meridional circulation. Strengthening of wave activity propagation and a stationary planetary wave number 1 in the middle and upper stratosphere, acceleration of meridional circulation, an increase of winter mean polar stratospheric volume (Vpsc) and strengthening of Arctic stratosphere interannual variability after the middle of 21st century, especially under a severe scenario, were revealed. March monthly values of Vpsc in some winters could be about two times more than observed ones in the Arctic stratosphere in the spring of 2011 and 2020, which in turn could lead to large ozone layer destruction. Composite analysis shows that “warm” winters with the least winter mean Vpsc values are characterized by strengthening of wave activity propagation from the troposphere into the stratosphere in December but weaker propagation in January–February in comparison with winters having the largest Vpsc values

    Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates

    No full text
    Amorphous germanium films on nonrefractory glass substrates were annealed by ultrashort near-infrared (1030 nm, 1.4 ps) and mid-infrared (1500 nm, 70 fs) laser pulses. Crystallization of germanium irradiated at a laser energy density (fluence) range from 25 to 400 mJ/cm2 under single-shot and multishot conditions was investigated using Raman spectroscopy. The dependence of the fraction of the crystalline phase on the fluence was obtained for picosecond and femtosecond laser annealing. The regimes of almost complete crystallization of germanium films over the entire thickness were obtained (from the analysis of Raman spectra with excitation of 785 nm laser). The possibility of scanning laser processing is shown, which can be used to create films of micro- and nanocrystalline germanium on flexible substrates

    Weak polyelectrolyte multilayers as tunable membranes for solvent resistant nanofiltration

    Get PDF
    International audienceThis manuscript encompasses the investigation into the solvent resistant nanofiltration (SRNF) performance of multilayer membranes prepared from weak polyelectrolytes. These weak polyelectrolytes are unique in that the charge density is not fixed and depends on the coating pH, adding an extra variable as tuning parameter for SRNF performance. The weak polyelectrolyte based multilayers (PEMs) were prepared on a hydrolyzed PAN support membrane from poly(allylamine hydrochloride) (PAH) as polycation and poly(acrylic acid) (PAA) as polyanion. Detailed investigations on the role of the pH of the coating solution on the performance of the prepared SRNF-membranes were carried out with organic dyes of different size (~300–1000 Da) and charge. Variation in pH of the coating solutions was found to lead to a large degree of control over the separation performance of the prepared SRNF-membranes for the different dyes. The solvent permeabilities and the dye retentions were measured and correlated to variations in the PEM membrane structures, with more dye adsorption being found for membranes with more free acid and amine groups. The membranes were also found to be stable for long term-filtrations in solvents such as isopropyl alcohol (IPA), acetonitrile (ACN), tetrahydrofuran (THF) and in the challenging polar aprotic solvent, N,N-dimethylformamide (DMF). Results of this study clearly demonstrate the potential of using pH as tuning parameter for weak PEMs to prepare SRNF-membranes optimized for specific application

    Selective ultrashort laser annealing of amorphous Ge/Si multilayer stacks

    No full text
    We report on single-short laser crystallization of Ge/Si multilayer stacks consisting of alternating amorphous nanosized films of silicon and germanium using near- and mid-infrared femtosecond and picosecond laser pulses. The phase composition of the irradiated stacks was investigated by the Raman scattering technique. Several non-ablative regimes of crystallization were found, from partial crystallization of germanium without intermixing the Ge/Si layers to complete intermixing of the layers with formation of GexSi1-x solid alloys. The roles of one- and two-photon absorption, thermal and non-thermal (ultrafast) melting processes, and laser-induced stresses in selective pico- and femtosecond laser annealing are analysed based on theoretical estimations and comparison with experimental data. It is concluded that, due to a mismatch of the thermal expansion coefficients between the adjacent stack layers, efficient explosive solid-phase crystallization of the Ge layers is possible at relatively low temperatures, well below the melting point. The possibility of ultrafast non-thermal phase transition in germanium in the studied regimes is also discussed
    corecore