16 research outputs found

    In Situ SERS Sensing by a Laser-Induced Aggregation of Silver Nanoparticles Templated on a Thermoresponsive Polymer

    Get PDF
    A stimuli-responsive (pH- and thermoresponsive) micelle-forming diblock copolymer, poly(1,2-butadiene) 290 - block -poly( N , N -dimethylaminoethyl methacrylate) 240 (PB- b -PDMAEMA), was used as a polymer template for the in situ synthesis of silver nanoparticles (AgNPs) through Ag + complexation with PDMAEMA blocks, followed by the reduction of the bound Ag + with sodium borohydride. A successful synthesis of the AgNPs on a PB- b -PDMAEMA micellar template was confirmed by means of UV–Vis spectroscopy and transmission electron microscopy, wherein the shape and size of the AgNPs were determined. A phase transition of the polymer matrix in the AgNPs/PB- b -PDMAEMA metallopolymer hybrids, which results from a collapse and aggregation of PDMAEMA blocks, was manifested by changes in the transmittance of their aqueous solutions as a function of temperature. A SERS reporting probe, 4-mercaptophenylboronic acid (4-MPBA), was used to demonstrate a laser-induced enhancement of the SERS signal observed under constant laser irradiation. The local heating of the AgNPs/PB- b -PDMAEMA sample in the laser spot is thought to be responsible for the triggered SERS effect, which is caused by the approaching of AgNPs and the generation of “hot spots” under a thermo-induced collapse and the aggregation of the PDMAEMA blocks of the polymer matrix. The triggered SERS effect depends on the time of a laser exposure and on the concentration of 4-MPBA. Possible mechanisms of the laser-induced heating for the AgNPs/PB- b -PDMAEMA metallopolymer hybrids are discussed

    Plasmonic Photonic-Crystal Slabs: Visualization of the Bloch Surface Wave Resonance for an Ultrasensitive, Robust and Reusable Optical Biosensor

    No full text
    A one-dimensional photonic crystal (PhC) with termination by a metal film—a plasmonic photonic-crystal slab—has been theoretically analyzed for its optical response at a variation of the dielectric permittivity of an analyte and at a condition simulating the molecular binding event. Visualization of the Bloch surface wave resonance (SWR) was done with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a PhC. An SWR peak in spectra of such a plasmonic photonic crystal (PPhC) slab comprising a noble or base metal layer was shown to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. As a consequence, the considered PPhC-based optical sensors exhibited an enhanced sensitivity and a good robustness in comparison with the conventional surface-plasmon and Bloch surface wave sensors. The PPhC biosensors can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration

    The Faraday effect in two-dimensional magneto-photonic crystals

    No full text
    The necessary conditions for the observation of the Faraday effect in 2D magneto-photonic crystals are discussed. It is found. that the Faraday effect may be observed in the directions where any couple of the wave vectors of the harmonics consisting the Bloch waves of TE and TM solutions in zero magnetic field are identical. This direction corresponds neither to Faraday nor to Voigt geometry.4 page(s

    Superprism effect in magneto-photonic crystals

    No full text
    6 page(s

    Linkage between anisotropic and gyrotropic degenerate bandgaps

    No full text
    Formation of bandgaps in a one-dimensional magnetophotonic crystal made of anisotropic uniaxial materials with gyrotropy was studied. In such a crystal two types of degenerate bandgaps can appear at the same frequencies: anisotropic bandgaps (at no magnetization and angularly offset optical axes of the layers\u27 materials) and gyrotropic bandgaps (at magnetization and collinear optical axes). A linkage between such degenerate bandgaps was studied. Abandgap of one type becomes wider if the formation mechanism for the bandgap of the other type is turned on. The width of such a combined bandgap was determined to be a function of only the widths of the respective anisotropic and gyrotropic degenerate bandgaps and to not depend explicitly on any other parameters. ©2011 Optical Society of America

    Elliptical normal modes and stop band reconfiguration in multimode birefringent one-dimensional magnetophotonic crystals

    No full text
    This study examines photonic stop band reconfiguration upon magnetization reversal in multimode elliptically birefringent Bragg filter waveguides. Magnetization reversal in longitudinally magnetized magneto-optic waveguides affects the character of the local orthogonal elliptically polarized normal modes, impacting the filter\u27s stop band configuration. Unlike the standard case of circular birefringence in magneto-optic media, opposite helicity states do not transform into each other upon magnetization reversal for a given propagation direction. Rather, helicity reversals yield new and different normal modes with perpendicularly oriented semimajor axes, corresponding to a north-south mirror reflection through the equatorial plane of the Poincaré sphere. For asymmetric contradirectional coupling between different-order waveguide modes in multimode magnetophotonic crystals, this symmetry breaking, namely, the obliteration of normal modes upon magnetization reversal, allows for strongly reconfigured stop bands, through the hybridization of the elliptically polarized states. The effect of Bloch mode reconfiguration on the stop band spectral profile contributes to the magnetic response of the filter. In such elliptically birefringent media, input polarization helicity reversal also becomes a powerful tool for optical transmittance control. Both magnetization and helicity reversals can thus serve as useful tools for the fabrication of on-chip magnetophotonic crystal switches. © 2011 American Physical Society
    corecore