120 research outputs found

    Conjugation to polymeric chains of influenza drugs targeting M2 ion channels partially restores inhibition of drug-resistant mutants

    Get PDF
    By attaching multiple copies of the influenza M2 ion channel inhibitors amantadine (1) and rimantadine (2) to polymeric chains, we endeavored to recover their potency in inhibiting drug-resistant influenza viruses. Depending on loading densities, as well as the nature of the drug, the polymer, and the spacer arm, polymer-conjugated drugs were up to 30-fold more potent inhibitors of drug-resistant strains than their monomeric parents. In particular, a 20% loading density and a short linker group on the negatively charged poly-l-glutamate resulted in one of the most potent inhibitors for 2's conjugates against drug-resistant influenza strains. Although full recovery of the inhibitory action against drug-resistant strains was not achieved, this study may be a step toward salvaging anti-influenza drugs that are no longer effective.Martin Family Society of Fellows for SustainabilityNational Institutes of Health (U.S.) (Grant U01-AI074443

    Antiviral and Antibacterial Polyurethanes of Various Modalities

    Get PDF
    We have prepared and characterized a new polyurethane-based antimicrobial material, N,N-dodecyl,methyl-polyurethane (Quat-12-PU). It exhibits strong antiviral and antibacterial activities when coated (as an organic solution or an aqueous nanosuspension) onto surfaces and antibacterial activity when electrospun into nanofibers. Quat-12-PU surfaces are able to kill airborne Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria, as well as inactivate the enveloped influenza virus (but not the non-enveloped poliovirus).United States. Army Research Office. Institute for Soldier NanotechnologiesMartin Family Society of Fellows for Sustainabilit

    Decreasing Herpes Simplex Viral Infectivity in Solution by Surface-Immobilized and Suspended N,N-Dodecyl,methyl-polyethylenimine

    Get PDF
    Purpose To explore surface-immobilized and suspended modalities of the hydrophobic polycation N,N-dodecyl,methyl-polyethylenimine (DMPEI) for the ability to reduce viral infectivity in aqueous solutions containing herpes simplex viruses (HSVs) 1 and 2. Methods Surface-immobilized (coated onto surfaces) and suspended DMPEI were incubated with aqueous solutions containing HSV-1 or -2 to measure the antiviral effect of the hydrophobic polycation’s formulations on HSVs. Results DMPEI coated on either polyethylene slides or male latex condoms dramatically decreases infectivity in solutions containing HSV-1 or -2. Moreover, DMPEI suspended in aqueous solution markedly reduces the infectious titer of these HSVs. Conclusion Our results suggest potential uses of DMPEI for both prophylaxis (in the form of coated condoms) and treatment (as a topical suspension) for HSV infections.Martin Family Graduate FellowshipNational Institutes of Health (U.S.) (Grant AI057552)United States. Army Research Office (Grant W911NF-07-D-0004

    Attenuation of corneal myofibroblast development through nanoparticle-mediated soluble transforming growth factor-β type II receptor (sTGFβRII) gene transfer

    Get PDF
    Purpose: To explore (i) the potential of polyethylenimine (PEI)-DNA nanoparticles as a vector for delivering genes into human corneal fibroblasts, and (ii) whether the nanoparticle-mediated soluble extracellular domain of the transforming growth factor–β type II receptor (sTGFβRII) gene therapy could be used to reduce myofibroblasts and fibrosis in the cornea using an in vitro model. Methods: PEI-DNA nanoparticles were prepared at a nitrogen-to-phosphate ratio of 30 by mixing linear PEI and a plasmid encoding sTGFβRII conjugated to the fragment crystallizable (Fc) portion of human immunoglobulin. The PEI-DNA polyplex formation was confirmed through gel retardation assay. Human corneal fibroblasts (HCFs) were generated from donor corneas; myofibroblasts and fibrosis were induced with TGFβ1 (1 ng/ml) stimulation employing serum-free conditions. The sTGFβRII conjugated to the Fc portion of human immunoglobulin gene was introduced into HCF using either PEI-DNA nanoparticles or Lipofectamine. Suitable negative and positive controls to compare selected nanoparticle and therapeutic gene efficiency were included. Delivered gene copies and mRNA (mRNA) expression were quantified with real-time quantitative PCR (qPCR) and protein with enzyme-linked immunosorbent assay (ELISA). The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (SMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Cytotoxicity was determined using cellular viability, proliferation, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results: PEI readily bound to plasmids to form nanoparticular polyplexes and exhibited much greater transfection efficiency (p<0.01) than the commercial reagent Lipofectamine. The PEI-DNA-treated cultures showed 4.5×10[superscript 4] plasmid copies/µg DNA in real-time qPCR and 7,030±87 pg/ml sTGFβRII protein in ELISA analyses, whereas Lipofectamine-transfected cultures demonstrated 1.9×10[superscript 3] gene copies/µg DNA and 1,640±100 pg/ml sTGFβRII protein during these assays. The PEI-mediated sTGFβRII delivery remarkably attenuated TGFβ1-induced transdifferentiation of corneal fibroblasts to myofibroblasts in cultures, as indicated by threefold lower levels of SMA mRNA (p<0.01) and significant inhibition of SMA protein (up to 96±3%; p<0.001 compared to no-gene-delivered cultures) in immunocytochemical staining and immunoblotting. The nanoparticle-mediated delivery of sTGFβRII showed significantly better antifibrotic effects than the Lipofectamine under similar experimental conditions. However, the inhibition of myofibroblast in HCF cultures by sTGFβRII overexpression by either method was significantly higher than the naked vector transfection. Furthermore, PEI- or Lipofectamine-mediated sTGFβRII delivery into HCF did not alter cellular proliferation or phenotype at 12 and 24 h post-treatment. Nanoparticles treated with HCF showed more than 90% cellular viability and very low cell death (2–6 TUNEL+ cells), suggesting that the tested doses of PEI-nanoparticles do not induce significant cell death. Conclusions: This study demonstrated that PEI-DNA nanoparticles are an attractive vector for the development of nonviral corneal gene therapy approaches and that the sTGFβRII gene delivery into keratocytes could be used to control corneal fibrosis in vivo.National Institutes of Health (U.S.) (RO1EB000244

    Conjugating drug candidates to polymeric chains does not necessarily enhance anti-influenza activity

    Get PDF
    Using the plaque reduction assay, relatively simple bicyclic quinone molecules, as well as multiple copies thereof covalently attached to a long polyglutamate-based polymeric chain, were examined as new inhibitors of various naturally occurring strains of influenza A virus. The polymer-conjugated inhibitors were found to have a far greater potency (for some as high as two orders of magnitude when a long spacer arm was employed) than their corresponding parent molecules against the human Wuhan influenza strain. However, such polymeric inhibitors failed to exhibit higher potency compared with their small molecule predecessors against the human Puerto Rico and avian turkey influenza strains. These observations, further explored by means of molecular modeling, reveal the previously unrecognized unpredictability of the benefits of multivalency, possibly because of poor accessibility of the viral targets to polymeric agentsNational Institutes of Health (U.S.) (Grant U01-AI074443

    Hydrophobic Polycationic Coatings Disinfect Poliovirus and Rotavirus Solutions

    Get PDF
    Coating surfaces with N-alkylated polyethylenimines (PEIs), namely branched N,N-hexyl,methyl-PEI via covalent attachment to glass or linear N,N-dodecyl,methyl-PEI by physical deposition (“painting”) onto polyethylene, enables the resultant materials to quickly and efficiently disinfect aqueous solutions of (non-enveloped) poliovirus and rotavirus.United States. Army Research Office. (Grant Number DAAD-19-02-D0002)Tata Chemicals Limite

    BMP7 Gene Transfer via Gold Nanoparticles into Stroma Inhibits Corneal Fibrosis In Vivo

    Get PDF
    This study examined the effects of BMP7 gene transfer on corneal wound healing and fibrosis inhibition in vivo using a rabbit model. Corneal haze in rabbits was produced with the excimer laser performing -9 diopters photorefractive keratectomy. BMP7 gene was introduced into rabbit keratocytes by polyethylimine-conjugated gold nanoparticles (PEI2-GNPs) transfection solution single 5-minute topical application on the eye. Corneal haze and ocular health in live animals was gauged with stereo- and slit-lamp biomicroscopy. The levels of fibrosis [α-smooth muscle actin (αSMA), F-actin and fibronectin], immune reaction (CD11b and F4/80), keratocyte apoptosis (TUNEL), calcification (alizarin red, vonKossa and osteocalcin), and delivered-BMP7 gene expression in corneal tissues were quantified with immunofluorescence, western blotting and/or real-time PCR. Human corneal fibroblasts (HCF) and in vitro experiments were used to characterize the molecular mechanism mediating BMP7’s anti-fibrosis effects. PEI2-GNPs showed substantial BMP7 gene delivery into rabbit keratocytes in vivo (2×10[superscript 4] gene copies/ug DNA). Localized BMP7 gene therapy showed a significant corneal haze decrease (1.68±0.31 compared to 3.2±0.43 in control corneas; p88%; p<0.0001), and immunoblotting of BMP7-transefected HCFs grown in the presence of TGFβ demonstrated significantly enhanced pSmad-1/5/8 (95%; p<0.001) and Smad6 (53%, p<0.001), and decreased αSMA (78%; p<0.001) protein levels. These results suggest that localized BMP7 gene delivery in rabbit cornea modulates wound healing and inhibits fibrosis in vivo by counter balancing TGFβ1-mediated profibrotic Smad signaling.National Institutes of Health (U.S.) (RO1EB000244)Mason Eye Institute (Research to Prevent Blindness Unrestricted Grant

    BMP7 Gene Transfer via Gold Nanoparticles into Stroma Inhibits Corneal Fibrosis \u3cem\u3ein vivo\u3c/em\u3e

    Get PDF
    This study examined the effects of BMP7 gene transfer on corneal wound healing and fibrosis inhibition in vivo using a rabbit model. Corneal haze in rabbits was produced with the excimer laser performing -9 diopters photorefractive keratectomy. BMP7 gene was introduced into rabbit keratocytes by polyethylimine-conjugated gold nanoparticles (PEI2- GNPs) transfection solution single 5-minute topical application on the eye. Corneal haze and ocular health in live animals was gauged with stereo- and slit-lamp biomicroscopy. The levels of fibrosis [a-smooth muscle actin (aSMA), F-actin and fibronectin], immune reaction (CD11b and F4/80), keratocyte apoptosis (TUNEL), calcification (alizarin red, vonKossa and osteocalcin), and delivered-BMP7 gene expression in corneal tissues were quantified with immunofluorescence, western blotting and/or real-time PCR. Human corneal fibroblasts (HCF) and in vitro experiments were used to characterize the molecular mechanism mediating BMP7’s anti-fibrosis effects. PEI2-GNPs showed substantial BMP7 gene delivery into rabbit keratocytes in vivo (26104 gene copies/ug DNA). Localized BMP7 gene therapy showed a significant corneal haze decrease (1.6860.31 compared to 3.260.43 in control corneas; p,0.05) in Fantes grading scale. Immunostaining and immunoblot analyses detected significantly reduced levels of aSMA (4665% p,0.001) and fibronectin proteins (4865% p,0.01). TUNEL, CD11b, and F4/80 assays revealed that BMP7 gene therapy is nonimmunogenic and nontoxic for the cornea. Furthermore, alizarin red, vonKossa and osteocalcin analyses revealed that localized PEI2-GNP-mediated BMP7 gene transfer in rabbit cornea does not cause calcification or osteoblast recruitment. Immunofluorescence of BMP7-transefected HCFs showed significantly increased pSmad-1/5/8 nuclear localization (.88%; p,0.0001), and immunoblotting of BMP7-transefected HCFs grown in the presence of TGFb demonstrated significantly enhanced pSmad-1/5/8 (95%; p,0.001) and Smad6 (53%, p,0.001), and decreased aSMA (78%; p,0.001) protein levels. These results suggest that localized BMP7 gene delivery in rabbit cornea modulates wound healing and inhibits fibrosis in vivo by counter balancing TGFb1-mediated profibrotic Smad signaling

    Attaching zanamivir to a polymer markedly enhances its activity against drug-resistant strains of influenza a virus

    Get PDF
    Effects of the commercial drug zanamivir (Relenza™) covalently attached to poly-l-glutamine on the infectivity of influenza A viruses are examined using the plaque reduction assay and binding affinity to viral neuraminidase (NA). These multivalent drug conjugates exhibit (i) up to a 20,000-fold improvement in anti-influenza potency compared with the zanamivir parent against human and avian viral strains, including both wild-type and drug-resistant mutants, and (ii) superior neuraminidase (NA) inhibition constants, especially for the mutants. These findings provide a basis for exploring polymer-attached inhibitors as more efficacious therapeutics, particularly against drug-resistant influenza strains.National Institutes of Health (U.S.) (Grant Number U01-AI074443)Fundación Ramón Areces. Postdoctoral Fellowshi

    N/P ratio in the PEI2-GNP-DNA complex affects transgene delivery in the human cornea in vitro

    Get PDF
    Recently, we discovered that polyethylenimine-conjugated gold nanoparticles (PEI2- GNP) could be used as gene therapy vector for the cornea. It was hypothesized that DNA concentration, incubation timing and PEI monomer amount in transfection solution affect gene transfer efficiency and toxicity. The aims of this study were to test whether molar ratio of PEI2 nitrogen (N) and phosphate (P) of DNA in PEI2-GNP transfection solution regulates transgene delivery in human corneal fibroblasts in vitro, and examine PEI2-GNP toxicity, uptake and clearance for the cornea in vivo."National Eye Institute, NIH, Bethesda for RO1EY017294 (RRM), Diversity (RRM) and Veteran Health Affairs Merit (RRM) grants and Unrestricted grant from Research to Prevent Blindness, New York
    corecore