16 research outputs found

    The potent vasodilating and guanylyl cyclase activating dinitrosyl-iron(II) complex is stored in a protein-bound form in vascular tissue and is released by thiols

    Get PDF
    AbstractWe studied the biological activity, stability and interaction of dinitrosyl-iron(II)-L-cysteine with vascular tissue. Dinitrosyl-iron((II)-L-cysteine was a potent activator of purified soluble guanylyl cyclase (EC50 (nM with and 100 nM without superoxide dismutase) and relaxed noradrenaline-precontracted segments of endothelium-denuded rabbit femoral artery (EC50 10 nM superoxide dismutase). Pre-incubation (5 min; 310 K) of endothelium-denuded rabbit aortic segments with dinitrosyl-iron(II)-L-cysteine (0.036–3.6 mM) resulted in a concentration-dependent formation of a dinitrosyl-iron(II complex with protein thiol groups, as detected by ESR spectroscopy. While the complex with proteins was stable for 2 h at 310 K, dinitrosyl-iron(II)-L-cysteine in aqueous solution (30–360 ÎŒM) decomposed completely within 15 min, as indicated by disappearance of its isotropic ESR signal at gav = 2.03 (293 K). Aortic segments pre-incubated with dinitrosyl-iron(II)-L-cysteine released a labile vasodilating and guanylyl cyclase activating factor. Perfusion of these segments with N-acetyl-L-cysteine resulted in the generation of a low molecular weight dinitrosyl-iron(II)-dithiolate from the dinitrosyl-iron(II) complex with proteins, as revealed by the shape change of the ESR signal at 293 K. The low molecular weight dinitrosyl-iron(II)-dithiolate accounted to an enhanced guanylyl cyclase activation and vasodilation induced by the aortic effluent. We conclude that nitric oxide (NO) produced by, or acting on vascular cells can be stabilized and stored as a dinitrosyl-iron(II) complex with protein thiols, and can be released from cells in the form of a low molecular weight dinitrosyl-iron(II)-dithiolate by intra- and extracellular thiols

    Normoxic cardiopulmonary bypass reduces oxidative myocardial damage and nitric oxide during cardiac operations in the adult

    Get PDF
    AbstractObjective: Hyperoxic cardiopulmonary bypass is widely used during cardiac operations in the adult. This management may cause oxygenation injury induced by oxygen-derived free radicals and nitric oxide. Oxidative damage may be significantly limited by maintaining a more physiologic oxygen tension strategy (normoxic cardiopulmonary bypass). Methods: During elective coronary artery bypass grafting, 40 consecutive patients underwent either hyperoxic (oxygen tension = 400 mm Hg) or normoxic (oxygen tension = 140 mm Hg) cardiopulmonary bypass. At the beginning and the end of bypass this study assessed polymorphonuclear leukocyte elastase, nitrate, creatine kinase, and lactic dehydrogenase, antioxidant levels, and malondialdehyde in coronary sinus blood. Cardiac index was measured before and after cardiopulmonary bypass. Results: There was no difference between groups with regard to age, sex, severity of disease, ejection fraction, number of grafts, duration of cardiopulmonary bypass, or ischemic time. Hyperoxic bypass resulted in higher levels of polymorphonuclear leukocyte elastase (377 ± 34 vs 171 ± 32 ng/ml, p = 0.0001), creatine kinase 672 ± 130 vs 293 ± 21 U/L, p = 0.002), lactic dehydrogenase (553 ± 48 vs 301 ± 12 U/L, p = 0.003), antioxidants (1.97 ± 0.10 vs 1.41 ± 0.11 mmol/L, p = 0.01), malondialdehyde (1.36 ± 0.1 Όmol/L, p = 0.005), and nitrate (19.3 ± 2.9 vs 10.1 ± 2.1 Όmol/L, p = 0.002), as well as reduction in lung vital capacity (66% ± 2% vs 81% ± 1%, p = 0.01) and forced 1-second expiratory volume (63% ± 10% vs 93% ± 4%, p = 0.005) compared with normoxic management. Cardiac index after cardiopulmonary bypass at low filling pressure was similar between groups (3.1 ± 0.2 vs 3.3 ± 0.3 L/min per square meter). [Data are mean ± standard error (analysis of variance), with p values compared with an oxygen tension of 400 mm Hg. Conclusions: Hyperoxic cardiopulmonary bypass during cardiac operations in adults results in oxidative myocardial damage related to oxygen-derived free radicals and nitric oxide. These adverse effects can be markedly limited by reduced oxygen tension management. The concept of normoxic cardiopulmonary bypass may be applied to surgical advantage during cardiac operations. (J Thorac Cardiovasc Surg 1998;116:327-34

    Post-transcriptional regulation of soluble guanylyl cyclase expression in rat aorta

    No full text
    We investigated the molecular mechanism of cyclic GMP-induced down-regulation of soluble guanylyl cyclase expression in rat aorta. 3-(5â€Č-Hydroxymethyl-2â€Č-furyl)-1-benzyl indazole (YC-1), an allosteric activator of this enzyme, decreased the expression of soluble guanylyl cyclase α1 subunit mRNA and protein. This effect was blocked by the enzyme inhibitor 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b-1,4)oxazin-1-one (NS2028) and by actinomycin D. Guanylyl cyclase α1mRNA-degrading activity was increased in protein extracts from YC-1-exposed aorta and was attenuated by pretreatment with actinomycin D and NS2028. Gelshift and supershift analyses using an adenylate-uridylate-rich ribonucleotide from the 3â€Č-untranslated region of the α1 mRNA and a monoclonal antibody directed against the mRNA-stabilizing protein HuR revealed HuR mRNA binding activity in aortic extracts, which was absent in extracts from YC-1-stimulated aortas. YC-1 decreased the expression of HuR, and this decrease was prevented by NS2028. Similarly, down-regulation of HuR by RNA interference in cultured rat aortic smooth muscle cells decreased α1 mRNA and protein expression. We conclude that HuR protects the guanylyl cyclase α1 mRNA by binding to the 3â€Č-untranslated region. Activation of guanylyl cyclase decreases HuR expression, inducing a rapid degradation of guanylyl cyclase α1 mRNA and lowering α1 subunit expression as a negative feedback response

    Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators

    No full text
    1. We studied the effects of 3-(5â€Č-hydroxymethyl-2â€Čfuryl)-1-benzyl indazole (YC-1) on the activity of purified soluble guanylyl cyclase (sGC), the formation of guanosine-3â€Č : 5â€Č cyclic monophosphate (cyclic GMP) in vascular smooth muscle cells (VSMC), and on the tone of rabbit isolated aortic rings preconstricted by phenylephrine (PE). In addition, we assessed the combined effect of YC-1, and either NO donors, or superoxide anions on these parameters. 2. YC-1 elicited a direct concentration-dependent activation of sGC (EC(50) 18.6±2.0 ΌM), which was rapid in onset and quickly reversible upon dilution. YC-1 altered the enzyme kinetics with respect to GTP by decreasing K(M) and increasing V(max). Activation of sGC by a combination of sodium nitroprusside (SNP) and YC-1 was superadditive at low and less than additive at high concentrations, indicating a synergistic activation of the enzyme by both agents. A specific inhibitor of sGC, 1H-(1,2,4)-oxdiazolo-(4,3-a)-6-bromo-quinoxazin-1-one (NS 2028), abolished activation of the enzyme by either compound. 3. YC-1 induced a concentration-dependent increase in intracellular cyclic GMP levels in rat cultured aortic VSMC, which was completely inhibited by NS 2028. YC-1 applied at the same concentration as SNP elicited 2.5 fold higher cyclic GMP formation. Cyclic GMP-increases in response to SNP and YC-1 were additive. 4. YC-1 relaxed preconstricted endothelium-denuded rabbit aortic rings in a concentration-dependent manner (50% at 20 ΌM) and markedly increased cyclic GMP levels. Relaxations were inhibited by NS 2028. A concentration of YC-1 (3 ΌM), which elicited only minor effects on relaxation and cyclic GMP, increased the vasodilator potency of SNP and nitroglycerin (NTG) by 10 fold and markedly enhanced SNP- and NTG-induced cyclic GMP formation. 5. Basal and YC-1-stimulated sGC activity was sensitive to inhibition by superoxide (O(2)(−)) generated by xanthine/xanthine oxidase, and was protected from this inhibition by superoxide dismutase (SOD). YC-1-stimulated sGC was also sensitive to inhibition by endogenously generated (O(2)(−) in rat preconstricted endothelium-denuded aortic rings. Relaxation to YC-1 was significantly attenuated in aortae from spontaneously hypertensive rats (SHR), which generated O(2)(−) at a higher rate than aortae from normotensive Wistar Kyoto rats (WKY). SOD restored the vasodilator responsiveness of SHR rings to YC-1. 6. In conclusion, these results indicate that YC-1 is an NO-independent, O(2)(−)-sensitive, direct activator of sGC in VSMC and exerts vasorelaxation by increasing intracellular cyclic GMP levels. The additive or even synergistic responses to NO-donors and YC-1 in cultured VSMC and isolated aortic rings apparently reflect the direct synergistic action of YC-1 and NO on the sGC. The synergism revealed in this in vitro study suggests that low doses of YC-1 may be of therapeutic value by permitting the reduction of nitrovasodilator dosage

    Nitric oxide inhibits caspase-3 by S-nitrosation in vivo

    No full text
    In cultured human endothelial cells, physiological levels of NO prevent apoptosis and interfere with the activation of the caspase cascade. In vitro data have demonstrated that NO inhibits the activity of caspase-3 by S-nitrosation of the enzyme. Here we present evidence for the in vivo occurrence and functional relevance of this novel antiapoptotic mechanism. To demonstrate that the cysteine residue Cys-163 of caspase-3 is S-nitrosated, cells were transfected with the Myc-tagged p17 subunit of caspase-3. After incubation of the transfected cells with different NO donors, Myc-tagged p17 was immunoprecipitated with anti-Myc antibody. S-Nitrosothiol was detected in the immunoprecipitate by electron spin resonance spectroscopy after liberation and spin trapping of NO by N-methyl-D-glucamine-dithiocarbamate-iron complex. Transfection of cells with a p17 mutant, where the essential Cys-163 was mutated into alanine, completely prevented S-nitrosation of the enzyme. As a functional correlate, in human umbilical vein endothelial cells the NO donors sodium nitroprusside or PAPA NONOate (50 microM) significantly reduced the increase in caspase-3-like activity induced by overexpressing caspase-3 by 75 and 70%, respectively. When human umbilical vein endothelial cells were cotransfected with beta-galactosidase, morphological analysis of stained cells revealed that cell death induction by overexpression of caspase-3 was completely suppressed in the presence of sodium nitroprusside, PAPA NONOate, or S-nitroso-L-cysteine (50 microM). Thus, NO supplied by exogenous NO donors serves in vivo as an antiapoptotic regulator of caspase activity via S-nitrosation of the Cys-163 residue of caspase-3

    Nitric oxide down-regulates the expression of the catalytic NADPH oxidase subunit Nox1 in rat renal mesangial cells

    No full text
    Glomerular mesangial cells can produce high amounts of nitric oxide (NO) and reactive oxygen species (ROS). Here we analyzed the impact of NO on the ROS-generating system, particularly on the NADPH oxidase Nox1. Nox1 mRNA and protein levels were markedly decreased by treatment of mesangial cells with the NO-releasing compound DETA-NO in a concentration- and time-dependent fashion. By altering the cGMP signaling system with different inhibitors or activators, we revealed that the effect of NO on Nox1 expression is at least in part mediated by cGMP. Analysis of a reporter construct comprising the 2547 bp of the nox1 promoter region revealed that a stimulatory effect of IL-1beta on nox1 transcription is counteracted by an inhibitory effect of IL-1beta-evoked endogenous NO formation. Moreover, pretreatment of mesangial cells with DETA-NO attenuated platelet-derived growth factor (PDGF)-BB or serum stimulated production of superoxide as assessed by real-time EPR spectroscopy and dichlorofluorescein formation. Transfection of mesangial cells with siRNAs directed against Nox1 and Nox4 revealed that inhibition of Nox1, but not Nox4 expression, is responsible for the reduced ROS formation by NO. Obviously, there exists a fine-tuned crosstalk between NO and ROS generating systems in the course of inflammatory diseases

    Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance

    No full text
    Recent studies suggest that mitochondrial aldehyde dehydrogenase (ALDH-2) plays a central role in the process of nitroglycerin (glyceryl trinitrate, GTN) biotransformation in vivo and that its inhibition accounts for mechanism-based tolerance in vitro. The extent to which ALDH-2 contributes to GTN tolerance (impaired relaxation to GTN) and cross-tolerance (impaired endothelium-dependent relaxation) in vivo remain to be elucidated. Rats were treated for three days with GTN. Infusions were accompanied by decreases in vascular ALDH-2 activity, GTN biotransformation, and cGMP-dependent kinase (cGK-I) activity. Further, whereas in control vessels, multiple inhibitors and substrates of ALDH-2 reduced both GTN-stimulation of cGKI and GTN-induced vasodilation, these agents had little effect on tolerant vessels. A state of functional tolerance (in the GTN/cGMP pathway) was recapitulated in cultured endothelial cells by knocking down mitochondrial DNA (ρ(0) cells). In addition, GTN increased the production of reactive oxygen species (ROS) by mitochondria, and these increases were associated with impaired relaxation to acetylcholine. Finally, antioxidants/reductants decreased mitochondrial ROS production and restored ALDH-2 activity. These observations suggest that nitrate tolerance is mediated, at least in significant part, by inhibition of vascular ALDH-2 and that mitochondrial ROS contribute to this inhibition. Thus, GTN tolerance may be viewed as a metabolic syndrome characterized by mitochondrial dysfunction

    Role of superoxide dismutase in in vivo and in vitro nitrate tolerance

    No full text
    1. We assessed whether pharmacological inhibition of CuZn-superoxide dismutase (SOD) mimics the molecular mechanism of either in vitro or in vivo nitrovasodilator tolerance. 2. In endothelium-intact aortic rings from in vivo tolerant rabbits the GTN- and acetylcholine (ACh)-induced maximal relaxation was attenuated by 36 and 23%, respectively. In vitro treatment of control rings with GTN (1 h 10 ΌM) similarly attenuated the vasorelaxant response to GTN, but not to ACh. 3. Formation of superoxide radicals ((‱)O(2)(−)) in endothelium-intact rings (lucigenin-chemiluminescence) increased 2.5 fold in in vivo tolerance, but significantly decreased in in vitro tolerance. The membrane associated NADH oxidase activity was increased 2.5 fold in homogenates of in vivo tolerant aortae, but was not changed in in vitro tolerant aorta. 4. Conversely, SOD activity and protein expression was halved in in vivo tolerance, but SOD activity was not altered by in vitro tolerance. The (‱)O(2)(−) scavenger tiron (10 mM) effectively restored the vasorelaxant response to GTN in in vivo tolerant aortic rings, but not the reduced response to GTN in in vitro tolerant rings. 5. Pretreatment (1 h) of vessels with diethyldithiocarbamate (DETC; 10 mM) attenuated vasorelaxant responses to GTN and ACh, increased vascular (‱)O(2)(−) production, and inhibited SOD activity in vessel homogenates to a similar degree as observed in in vivo tolerance. DETC-treatment of in vivo-tolerant vessels induced an additional increase in (‱)O(2)(−) production. 6. Increased (‱)O(2)(−) production in in vivo nitrate tolerant aorta is associated with activation of vascular NADH oxidase and inactivation of CuZnSOD. Therefore, in vivo tolerance can be mimicked by in vitro inhibition of CuZnSOD, but not by in vitro exposure to GTN, which does not affect vascular (‱)O(2)(−) production, NADH oxidase and CuZnSOD
    corecore