83 research outputs found

    Gains and Losses in Functionality – An Experimental Investigation of the Effect of Software Updates on Users’ Continuance Intentions

    Get PDF
    Although software updates are ubiquitous in professional and private IS usage, their impact on user behaviors has received little attention in post-adoption research. Based on expectation-confirmation-theory and the IS continuance model, we investigate the effects of gaining and loosing features through updates on expert and novice users’ continuance intentions (CI). In a vignette based experiment, we find that updates which add features to software after its release increase novices’ CI above and beyond a level generated by a monolithic software package that contains the entire feature set from the beginning. With diminished CI, experts show a contrary reaction to the same update. Losing features through an update, on the other hand, severely diminishes CI for experts and novices alike. Mediation analysis reveals positive disconfirmation of previous expectations as psychological mechanism behind novices’ counter-intuitive and somewhat non-rational responses to gaining features through an update. Implications for research and practice are derived

    Germanium Plasmonic Nanoantennas for Third-Harmonic Generation in the Mid Infrared

    Get PDF
    We explore the nonlinear optical properties of plasmonic semiconductor antennas resonant in the mid infrared. The nanostructures are fabricated on silicon substrates from heavily doped germanium films with a plasma frequency of 30 THz, equivalent to a wavelength of 10 ÎŒm. Illumination with ultrashort pulses at 10.8 ÎŒm produces coherent emission at 3.6 ÎŒm via third-harmonic generation

    Control of excitonic absorption by thickness variation in few-layer GaSe

    Get PDF
    We control the thickness of GaSe on the level of individual layers and study the corresponding optical absorption via highly sensitive differential transmission measurements. Suppression of excitonic transitions is observed when the number of layers is smaller than a critical value of 8. Through ab-initio modelling we are able to link this behavior to a fundamental change in the band structure that leads to the formation of a valence band shaped as an inverted Mexican hat in thin GaSe. The thickness-controlled modulation of the optical properties provides attractive resources for the development of functional optoelectronic devices based on a single material

    Tunability and Losses of Mid-infrared Plasmonics in Heavily Doped Germanium Thin Films

    Get PDF
    Heavily-doped semiconductor films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate heavily n-type doped germanium epilayers grown on different substrates, in-situ doped in the 101710^{17} to 101910^{19} cm−3^{-3} range, by infrared spectroscopy, first principle calculations, pump-probe spectroscopy and dc transport measurements to determine the relation between plasma edge and carrier density and to quantify mid-infrared plasmon losses. We demonstrate that the unscreened plasma frequency can be tuned in the 400 - 4800 cm−1^{-1} range and that the average electron scattering rate, dominated by scattering with optical phonons and charged impurities, increases almost linearly with frequency. We also found weak dependence of losses and tunability on the crystal defect density, on the inactivated dopant density and on the temperature down to 10 K. In films where the plasma was optically activated by pumping in the near-infrared, we found weak but significant dependence of relaxation times on the static doping level of the film. Our results suggest that plasmon decay times in the several-picosecond range can be obtained in n-type germanium thin films grown on silicon substrates hence allowing for underdamped mid-infrared plasma oscillations at room temperature.Comment: 18 pages, 10 figure

    Germanium Nanoantennas for Plasmon-enhanced Third Harmonic Generation in the Mid Infrared

    Get PDF
    Recent advances in semiconductor film deposition allow for the growth of heavily-doped germanium with effective plasma frequencies above 60 THz, corresponding to wavelengths below 5 ÎŒm. This technology paves the way for mid-infrared nanoplasmonics with application in integrated telecommunication systems and enhanced molecular sensing in the so-called vibrational fingerprint spectral region [1]

    1st EFORT European Consensus: Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices

    Get PDF
    Innovations in Orthopaedics and Traumatology have contributed to the achievement of a high-quality level of care in musculoskeletal disorders and injuries over the past decades. The applications of new implants as well as diagnostic and therapeutic techniques in addition to implementation of clinical research, have significantly improved patient outcomes, reduced complication rates and length of hospital stay in many areas. However, the regulatory framework is extensive, and there is a lack of understanding and clarity in daily practice what the meaning of clinical & pre‐clinical evidence as required by the MDR is. Thus, understanding and clarity are of utmost importance for introduction of new implants and implant-related instrumentation in combination with surgical technique to ensure a safe use of implants and treatment of patients. Therefore EFORT launched IPSI, The Implant and Patient Safety Initiative, which starting from an inaugural workshop in 2021 issued a set of recommendations, notably through a subsequent Delphi Process involving the National Member Societies of EFORT, European Specialty Societies as well as International Experts. These recommendations provide surgeons, researchers, implant manufacturers as well as patients and health authorities with a consensus of the development, implementation, and dissemination of innovation in the field of arthroplasty. The intended key outcomes of this 1st EFORT European Consensus on “Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices”are consented, practical pathways to maintain innovation and optimisation of orthopaedic products and workflows within the boundaries of MDR 2017/745. Open Access practical guidelines based on adequate, state of the art pre-clinical and clinical evaluation methodologies for the introduction of joint replacements and implant-related instrumentation shall provide hands-on orientation for orthopaedic surgeons, research institutes and laboratories, orthopaedic device manufacturers, Notified Bodies but also for National Institutes and authorities, patient representatives and further stakeholders. We would like to acknowledge and thank the Scientific Committee members, all International Expert Delegates, the Delegates from European National & Specialty Societies and the Editorial Team for their outstanding contributions and support during this EFORT European Consensus
    • 

    corecore