4 research outputs found

    Application of Quantitative Structure–Activity Relationship Models of 5‑HT<sub>1A</sub> Receptor Binding to Virtual Screening Identifies Novel and Potent 5‑HT<sub>1A</sub> Ligands

    No full text
    The 5-hydroxytryptamine 1A (5-HT<sub>1A</sub>) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure–activity relationship (QSAR) models of 5-HT<sub>1A</sub> receptor binding activity using data retrieved from the PDSP <i>K</i><sub>i</sub> database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (<i>K</i><sub>i</sub>) of 2.3 nM against 5-HT<sub>1A</sub> receptor. The novel 5-HT<sub>1A</sub> actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs

    Integrative Chemical–Biological Read-Across Approach for Chemical Hazard Classification

    No full text
    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here, we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (“biological” similarity). The Chemical–Biological Read-Across (CBRA) approach infers each compound’s toxicity from both chemical and biological analogues whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models

    Does Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling?

    No full text
    Prior to using a quantitative structure activity relationship (QSAR) model for external predictions, its predictive power should be established and validated. In the absence of a true external data set, the best way to validate the predictive ability of a model is to perform its statistical external validation. In statistical external validation, the overall data set is divided into training and test sets. Commonly, this splitting is performed using random division. Rational splitting methods can divide data sets into training and test sets in an intelligent fashion. The purpose of this study was to determine whether rational division methods lead to more predictive models compared to random division. A special data splitting procedure was used to facilitate the comparison between random and rational division methods. For each toxicity end point, the overall data set was divided into a modeling set (80% of the overall set) and an external evaluation set (20% of the overall set) using random division. The modeling set was then subdivided into a training set (80% of the modeling set) and a test set (20% of the modeling set) using rational division methods and by using random division. The Kennard-Stone, minimal test set dissimilarity, and sphere exclusion algorithms were used as the rational division methods. The hierarchical clustering, random forest, and <i>k</i>-nearest neighbor (<i>k</i>NN) methods were used to develop QSAR models based on the training sets. For <i>k</i>NN QSAR, multiple training and test sets were generated, and multiple QSAR models were built. The results of this study indicate that models based on rational division methods generate better statistical results for the test sets than models based on random division, but the predictive power of both types of models are comparable

    Multi-Descriptor Read Across (MuDRA): A Simple and Transparent Approach for Developing Accurate Quantitative Structure–Activity Relationship Models

    No full text
    Multiple approaches to quantitative structure–activity relationship (QSAR) modeling using various statistical or machine learning techniques and different types of chemical descriptors have been developed over the years. Oftentimes models are used in consensus to make more accurate predictions at the expense of model interpretation. We propose a simple, fast, and reliable method termed Multi-Descriptor Read Across (MuDRA) for developing both accurate and interpretable models. The method is conceptually related to the well-known kNN approach but uses different types of chemical descriptors simultaneously for similarity assessment. To benchmark the new method, we have built MuDRA models for six different end points (Ames mutagenicity, aquatic toxicity, hepatotoxicity, hERG liability, skin sensitization, and endocrine disruption) and compared the results with those generated with conventional consensus QSAR modeling. We find that models built with MuDRA show consistently high external accuracy similar to that of conventional QSAR models. However, MuDRA models excel in terms of transparency, interpretability, and computational efficiency. We posit that due to its methodological simplicity and reliable predictive accuracy, MuDRA provides a powerful alternative to a much more complex consensus QSAR modeling. MuDRA is implemented and freely available at the Chembench web portal (https://chembench.mml.unc.edu/mudra<i>)</i>
    corecore