88 research outputs found

    Reasoning by Structural Analogy Taking into Account the Context for Intelligent Decision Support Systems

    Get PDF
    Development of methods and tools for modeling human reasoning (common sense reasoning) by analogy in intelligent decision support systems is considered. Special attention is drawn to modeling reasoning by structural analogy taking the context into account. The possibility of estimating the obtained analogies taking into account the context is studied. This work was supported by RFBR

    Case-based Reasoning Method for Real-time Expert Diagnostics Systems

    Get PDF
    The method of case-based reasoning for a solution of problems of real-time diagnostics and forecasting in intelligent decision support systems (IDSS) is considered. Special attention is drawn to case library structure for real-time IDSS (RT IDSS) and algorithm of k-nearest neighbors type. This work was supported by RFBR

    Analogous Reasoning and Case-based Reasoning for Intelligent Decision Support Systems

    Get PDF
    Methods of analogous reasoning and case-based reasoning for intelligent decision support systems are considered. Special attention is drawn to methods based on a structural analogy that take the context into account. This work was supported by RFBR (projects 02-07-90042, 05-07-90232)

    Common Sense Reasoning in Diagnostic Systems

    Get PDF

    The radiation focusing by the array of waveguide based elements with controllable reflection

    Get PDF
    The authors propose a solution of the problem of radiovision using the reflective array, each element of which can change the reflection coefficient under the action of external control voltage. The focusing abilities of flat reflection array of monochromatic radiation were studied to solve the problem of radiovision. The array element based on waveguide with a controlled reflection coefficient was developed. The phase shift switching is 180Β°

    Spherical and cylindrical particle resonator as a cloak system

    Get PDF
    The concept of dielectric spherical or cylindrical particle in resonant mode as a cloak system is offered. In fundamental modes (modes with the smallest volume correspond to |m| = l, and s = 1) the field is concentrated mostly in the equatorial plane and at the surface of the sphere. Thus under resonance modes, such perturbation due to cuboid particle inserted in the spherical or cylindrical particle has almost no effect on the field forming resonance regardless of the value of internal particle material (defect) as long as this material does not cover the region where resonance takes place

    Selective thermal evolution of native oxide layer in Nb and Nb3Sn-coated SRF grade Nb: An in-situ angular XPS study

    Full text link
    This contribution discusses the results of an in-situ angular XPS study on the thermal evolution of the native oxide layer on Nb3Sn and pure Nb. XPS data were recorded with conventional spectrometers using an AlK(alpha) X-ray source for spectra collected up to 600 C, and an MgK(Alpha) X-rays source for temperatures above 600 C. The effect of the thickness, composition, and thermal stability of that oxide layer is relevant to understanding the functional properties of superconducting radiofrequency (SRF) cavities used in particle accelerators. There is a consensus that oxide plays a role in surface resistance (Rs). The focus of this study is Nb3Sn, which is a promising material that is used in the manufacturing of superconducting radiofrequency (SRF) cavities as well as in quantum sensing, and pure Nb, which was included in the study for comparison. The thermal evolution of the oxide layer in these two materials is found to be quite different, which is ascribed to the influence of the Sn atom on the reactivity of the Nb atom in Nb3Sn films. Nb and Sn atoms in this intermetallic solid have different electronegativity, and the Sn atom can reduce electron density around neighbouring Nb atoms in the solid, thus reducing their reactivity for oxygen. This is shown in the thickness, composition, and thermal stability of the oxide layer formed on Nb3Sn. The XPS spectra were complemented by grazing incident XRD patterns collected using the ESRF synchrotron radiation facility. The results discussed herein shed light on oxide evolution in the Nb3Sn compound and guide its processing for potential applications of the Nb3Sn-based SRF cavities in accelerators and other superconducting devices

    Subsurface radiolocation tomography of cables under dual-polarization probing

    Get PDF
    It is proposed to use the tomographic approach to the problem of detecting and imaging concealed utility networks. This approach is based on generating the three-dimensional radio images of the space being explored from the results of measuring its location wave projections in a dual-polarization measurement mode. The problem is solved by focusing radiation first on the β€œair–dielectric” interface and then inside the dielectric. Experimental data processing results and reconstructed threedimensional radio tomograms are provided for a β€œtwisted pair” cable and a fiber-optic cable with no metallic inclusions. The results confirm the operability of the approach

    Unoccupied Topological States on Bismuth Chalcogenides

    Full text link
    The unoccupied part of the band structure of topological insulators Bi2_2Tex_{x}Se3βˆ’x_{3-x} (x=0,2,3x=0,2,3) is studied by angle-resolved two-photon photoemission and density functional theory. For all surfaces linearly-dispersing surface states are found at the center of the surface Brillouin zone at energies around 1.3 eV above the Fermi level. Theoretical analysis shows that this feature appears in a spin-orbit-interaction induced and inverted local energy gap. This inversion is insensitive to variation of electronic and structural parameters in Bi2_2Se3_3 and Bi2_2Te2_2Se. In Bi2_2Te3_3 small structural variations can change the character of the local energy gap depending on which an unoccupied Dirac state does or does not exist. Circular dichroism measurements confirm the expected spin texture. From these findings we assign the observed state to an unoccupied topological surface state
    • …
    corecore