5,318 research outputs found

    Inflation and changing expenditure shares

    Get PDF
    Inflation (Finance)

    Generalised CP and A4A_4 Family Symmetry

    Full text link
    We perform a comprehensive study of family symmetry models based on A4A_4 combined with the generalised CP symmetry HCPH_{\rm{CP}}. We investigate the lepton mixing parameters which can be obtained from the original symmetry A4ā‹ŠHCPA_4\rtimes H_{\rm{CP}} breaking to different remnant symmetries in the neutrino and charged lepton sectors. We find that only one case is phenomenologically viable, namely GCPĪ½ā‰…Z2SƗHCPĪ½G^{\nu}_{\rm{CP}}\cong Z^{S}_2\times H^{\nu}_{\rm{CP}} in the neutrino sector and GCPlā‰…Z3Tā‹ŠHCPlG^{l}_{\rm{CP}}\cong Z^{T}_3\rtimes H^{l}_{\rm{CP}} in the charged lepton sector, leading to the prediction of no CP violation, namely Ī“CP\delta_{CP} and the Majorana phases Ī±21\alpha_{21} and Ī±31\alpha_{31} are all equal to either zero or Ļ€\pi. We then propose an effective supersymmetric model based on the symmetry A4ā‹ŠHCPA_4\rtimes H_{\rm{CP}} in which trimaximal lepton mixing is predicted together with either zero CP violation or Ī“CPā‰ƒĀ±Ļ€/2\delta_{CP}\simeq\pm \pi/2 with non-trivial Majorana phases. An ultraviolet completion of the effective model yields a neutrino mass matrix which depends on only three real parameters. As a result of this, all three CP phases and the absolute neutrino mass scale are determined, the atmospheric mixing angle is maximal, and the Dirac CP can either be preserved with Ī“CP=0,Ļ€\delta_{CP}=0,\pi or maximally broken with Ī“CP=Ā±Ļ€/2\delta_{CP}=\pm \pi /2 and sharp predictions for the Majorana phases and neutrinoless double beta decay.Comment: 38 pages, 3 figure

    Disentangling the timescales behind the non-perturbative heavy quark potential

    Full text link
    The static part of the heavy quark potential has been shown to be closely related to the spectrum of the rectangular Wilson loop. In particular the lowest lying positive frequency peak encodes the late time evolution of the two-body system, characterized by a complex potential. While initial studies assumed a perfect separation of early and late time physics, where a simple Lorentian (Breit-Wigner) shape suffices to describe the spectral peak, we argue that scale decoupling in general is not complete. Thus early time, i.e. non-potential effects, significantly modify the shape of the lowest peak. We derive on general grounds an improved peak distribution that reflects this fact. Application of the improved fit to non-perturbative lattice QCD spectra now yields a potential that is compatible with a transition to a deconfined screening plasma.Comment: 5 pages, 3 figure

    Complex Heavy-Quark Potential at Finite Temperature from Lattice QCD

    Full text link
    We calculate for the first time the complex potential between a heavy quark and antiquark at finite temperature across the deconfinement transition in lattice QCD. The real and imaginary part of the potential at each separation distance rr is obtained from the spectral function of the thermal Wilson loop. We confirm the existence of an imaginary part above the critical temperature TCT_C, which grows as a function of rr and underscores the importance of collisions with the gluonic environment for the melting of heavy quarkonia in the quark-gluon-plasma.Comment: 4 pages, 3 figures, to be published in PR
    • ā€¦
    corecore