1,061 research outputs found
Living with ghosts in Lorentz invariant theories
We argue that theories with ghosts may have a long lived vacuum state even if
all interactions are Lorentz preserving. In space-time dimension D = 2, we
consider the tree level decay rate of the vacuum into ghosts and ordinary
particles mediated by non-derivative interactions, showing that this is finite
and logarithmically growing in time. For D > 2, the decay rate is divergent
unless we assume that the interaction between ordinary matter and the ghost
sector is soft in the UV, so that it can be described in terms of non-local
form factors rather than point-like vertices. We provide an example of a
nonlocal gravitational-strength interaction between the two sectors, which
appears to satisfy all observational constraints.Comment: 17 pages, comments and references adde
Interfaces with a single growth inhomogeneity and anchored boundaries
The dynamics of a one dimensional growth model involving attachment and
detachment of particles is studied in the presence of a localized growth
inhomogeneity along with anchored boundary conditions. At large times, the
latter enforce an equilibrium stationary regime which allows for an exact
calculation of roughening exponents. The stochastic evolution is related to a
spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of
late stages. For vanishing gaps the interface can exhibit a slow morphological
transition followed by a change of scaling regimes which are studied
numerically. Instead, a faceting dynamics arises for gapful situations.Comment: REVTeX, 11 pages, 9 Postscript figure
S=1/2 chains and spin-Peierls transition in TiOCl
We study TiOCl as an example of an S=1/2 layered Mott insulator. From our
analysis of new susceptibility data, combined with LDA and LDA+U band structure
calculations, we conclude that orbital ordering produces quasi-one-dimensional
spin chains and that TiOCl is a new example of Heisenberg-chains which undergo
a spin-Peierls transition. The energy scale is an order of magnitude larger
than that of previously known examples. The effects of non-magnetic Sc
impurities are explained using a model of broken finite chains.Comment: 5 pages, 5 figures (color); details on crystal growth added; to be
published in Phys. Rev.
Estimating the parameters of the Sgr A* black hole
The measurement of relativistic effects around the galactic center may allow
in the near future to strongly constrain the parameters of the supermassive
black hole likely present at the galactic center (Sgr A*). As a by-product of
these measurements it would be possible to severely constrain, in addition,
also the parameters of the mass-density distributions of both the innermost
star cluster and the dark matter clump around the galactic center.Comment: Accepted for publication on General Relativity and Gravitation, 2010.
11 Pages, 1 Figur
Dualities in Quantum Hall System and Noncommutative Chern-Simons Theory
We discuss different dualities of QHE in the framework of the noncommutative
Chern-Simons theory. First, we consider the Morita or T-duality transformation
on the torus which maps the abelian noncommutative CS description of QHE on the
torus into the nonabelian commutative description on the dual torus. It is
argued that the Ruijsenaars integrable many-body system provides the
description of the QHE with finite amount of electrons on the torus. The new
IIB brane picture for the QHE is suggested and applied to Jain and generalized
hierarchies. This picture naturally links 2d -model and 3d CS
description of the QHE. All duality transformations are identified in the brane
setup and can be related with the mirror symmetry and S duality. We suggest a
brane interpretation of the plateu transition in IQHE in which a critical point
is naturally described by WZW model.Comment: 31 pages, 4 figure
Minimal Higher-Dimensional Extensions of the Standard Model and Electroweak Observables
We consider minimal 5-dimensional extensions of the Standard Model
compactified on an orbifold, in which the SU(2) and U(1)
gauge fields and Higgs bosons may or may not all propagate in the fifth
dimension while the observable matter is always assumed to be confined to a
4-dimensional subspace. We pay particular attention to consistently quantize
the higher-dimensional models in the generalized gauge and derive
analytic expressions for the mass spectrum of the resulting Kaluza-Klein states
and their couplings to matter. Based on recent data from electroweak precision
tests, we improve previous limits obtained in the 5-dimensional Standard Model
with a common compactification radius and extend our analysis to other possible
5-dimensional Standard-Model constructions. We find that the usually derived
lower bound of TeV on an universal compactification scale may be
considerably relaxed to TeV in a minimal scenario, in which the
SU(2) gauge boson is the only field that feels the presence of the fifth
dimension.Comment: 48 pages, LaTeX, 1 eps figure, typos correcte
Mass Suppression in Octet Baryon Production
There is a striking suppression of the cross section for production of octet
baryons in annihilation, as the mass of the produced hadron
increases. We present a simple parametrization for the fragmentation functions
into octet baryons guided by two input models: the SU(3) flavor symmetry part
is given by a quark-diquark model, and the baryon mass suppression part is
inspired by the string model. We need only eight free parameters to describe
the fragmentation functions for all octet baryons. These free parameters are
determined by a fit to the experimental data of octet baryon production in annihilation. Then we apply the obtained fragmentation functions to
predict the cross section of the octet baryon production in charged lepton DIS
and find consistency with the available experimental data. Furthermore, baryon
production in collisions is suggested to be an ideal domain to check the
predicted mass suppression.Comment: 20 pages, 5 figure
The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models
In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is
assumed that SUSY breaking on a hidden brane is communicated to the visible
brane via gauge superfields which propagate in the bulk. This leads to GUT
models where the common gaugino mass is the only soft SUSY breaking
term to receive contributions at tree level. To obtain a viable phenomenology,
it is assumed that the gaugino mass is induced at some scale beyond the
GUT scale, and that additional renormalization group running takes place
between and as in a SUSY GUT. We assume an SU(5) SUSY GUT above
the GUT scale, and compute the SUSY particle spectrum expected in models with
inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the
inoMSB model, and compute the SUSY reach including cuts and triggers approriate
to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the
Tevatron collider in the trilepton channel. %either with or without %identified
tau leptons. At the CERN LHC, values of (1160) GeV can be probed
with 10 (100) fb of integrated luminosity, corresponding to a reach in
terms of of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely
only be differentiated at a linear collider with sufficient energy to
produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure
Fractal Reconnection in Solar and Stellar Environments
Recent space based observations of the Sun revealed that magnetic
reconnection is ubiquitous in the solar atmosphere, ranging from small scale
reconnection (observed as nanoflares) to large scale one (observed as long
duration flares or giant arcades). Often the magnetic reconnection events are
associated with mass ejections or jets, which seem to be closely related to
multiple plasmoid ejections from fractal current sheet. The bursty radio and
hard X-ray emissions from flares also suggest the fractal reconnection and
associated particle acceleration. We shall discuss recent observations and
theories related to the plasmoid-induced-reconnection and the fractal
reconnection in solar flares, and their implication to reconnection physics and
particle acceleration. Recent findings of many superflares on solar type stars
that has extended the applicability of the fractal reconnection model of solar
flares to much a wider parameter space suitable for stellar flares are also
discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and
Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016),
33 pages, 18 figure
Type IIA Moduli Stabilization
We demonstrate that flux compactifications of type IIA string theory can
classically stabilize all geometric moduli. For a particular orientifold
background, we explicitly construct an infinite family of supersymmetric vacua
with all moduli stabilized at arbitrarily large volume, weak coupling, and
small negative cosmological constant. We obtain these solutions from both
ten-dimensional and four-dimensional perspectives. For more general
backgrounds, we study the equations for supersymmetric vacua coming from the
effective superpotential and show that all geometric moduli can be stabilized
by fluxes. We comment on the resulting picture of statistics on the landscape
of vacua.Comment: 48 pages, 2 figures, LaTeX. v2: references added. v3: minor comments
& references adde
- …
