76 research outputs found

    Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epilepsy is a common neurological disorder, which is attributed to uncontrollable abnormal hyper-excitability of neurons. We investigated the feasibility of using low-intensity, pulsed radiation of focused ultrasound (FUS) to non-invasively suppress epileptic activity in an animal model (rat), which was induced by the intraperitonial injection of pentylenetetrazol (PTZ).</p> <p>Results</p> <p>After the onset of induced seizures, FUS was transcranially administered to the brain twice for three minutes each while undergoing electroencephalographic (EEG) monitoring. An air-backed, spherical segment ultrasound transducer (diameter: 6 cm; radius-of-curvature: 7 cm) operating at a fundamental frequency of 690 KHz was used to deliver a train of 0.5 msec-long pulses of sonication at a repetitive rate of 100 Hz to the thalamic areas of the brain. The acoustic intensity (130 mW/cm<sup>2</sup>) used in the experiment was sufficiently within the range of safety guidelines for the clinical ultrasound imaging. The occurrence of epileptic EEG bursts from epilepsy-induced rats significantly decreased after sonication when it was compared to the pre-sonication epileptic state. The PTZ-induced control group that did not receive any sonication showed a sustained number of epileptic EEG signal bursts. The animals that underwent sonication also showed less severe epileptic behavior, as assessed by the Racine score. Histological analysis confirmed that the sonication did not cause any damage to the brain tissue.</p> <p>Conclusions</p> <p>These results revealed that low-intensity, pulsed FUS sonication suppressed the number of epileptic signal bursts using acute epilepsy model in animal. Due to its non-invasiveness and spatial selectivity, FUS may offer new perspectives for a possible non-invasive treatment of epilepsy.</p

    New Strategies for Combining Mindfulness with Integrative Cognitive Behavioral Therapy for the Treatment of Generalized Anxiety Disorder

    Get PDF
    Generalized anxiety disorder (GAD) severely impacts social functioning, distress levels, and utilization of medical care compared with that of other major psychiatric disorders. Neither pharmacological nor psychotherapy interventions have adequately controlled cardinal symptoms of GAD: pervasive excessive anxiety and uncontrollable worry. Research has established cognitive behavioral therapy (CBT) as the most effective psychotherapy for controlling GAD; however, outcomes remain at only 50% reduction, with high relapse rates. Mindfulness has been integrated with CBT to treat people suffering from numerous psychiatric disorders, with mindfulness based stress reduction (MBSR) being the most researched. Preliminary evidence supports MBSR’s potential for controlling GAD symptoms and key researchers suggest mindfulness practices possess key elements for treating GAD. Classical mindfulness (CM) differs significantly from MBSR and possesses unique potentials for directly targeting process and state GAD symptoms inadequately treated by CBT. This article introduces the theory and practice of CM, its differences from MBSR, and a critical review of MBSR and CBT treatments for GAD. CM strategies designed to complement CBT targeting cardinal GAD symptoms are outlined with a case study illustrating its use

    Dynamical Principles of Emotion-Cognition Interaction: Mathematical Images of Mental Disorders

    Get PDF
    The key contribution of this work is to introduce a mathematical framework to understand self-organized dynamics in the brain that can explain certain aspects of itinerant behavior. Specifically, we introduce a model based upon the coupling of generalized Lotka-Volterra systems. This coupling is based upon competition for common resources. The system can be regarded as a normal or canonical form for any distributed system that shows self-organized dynamics that entail winnerless competition. Crucially, we will show that some of the fundamental instabilities that arise in these coupled systems are remarkably similar to endogenous activity seen in the brain (using EEG and fMRI). Furthermore, by changing a small subset of the system's parameters we can produce bifurcations and metastable sequential dynamics changing, which bear a remarkable similarity to pathological brain states seen in psychiatry. In what follows, we will consider the coupling of two macroscopic modes of brain activity, which, in a purely descriptive fashion, we will label as cognitive and emotional modes. Our aim is to examine the dynamical structures that emerge when coupling these two modes and relate them tentatively to brain activity in normal and non-normal states

    Effective Deepening of Meditative-States with Focused Ultrasound Stimulation and its Moderation by Prior-Experience

    No full text
    This study explores the intersection of meditation and neurostimulation, focusing on Focused Ultrasound Stimulation (FUS) as a potential aid in achieving meditative states. We compared the effects of FUS to sham stimulation in experienced and novice meditators, targeting three specific brain regions: the posterior cingulate cortex (PCC), the caudate nucleus (CN), and the insular cortex (Iav). Our investigation is particularly relevant given the growing evidence of meditation's positive impact on mental health and well-being, and the challenges many face in maintaining regular meditative practice. The chosen targets are backed by empirical and theoretical support, reflecting their roles in meditative states and related cognitive functions. This study not only contributes to understanding the neural mechanisms of meditation but also explores the potential of FUS in enhancing meditative practices, especially for those who struggle to achieve these states independently
    corecore