21 research outputs found

    Selective Intermolecular C–H Bond Activation: A Straightforward Synthetic Approach to Heteroalkyl Yttrium Complexes Containing a Bis(pyrazolyl)methyl Ligand

    No full text
    The reactions of bis­(pyrazolyl)­methanes CH<sub>2</sub>(C<sub>3</sub>HN<sub>2</sub>R<sub>2</sub>-3,5)<sub>2</sub> (R = Me, <i>t</i>Bu) with Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(THF)<sub>2</sub> and LY­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>­(THF)<sub><i>n</i></sub> (L = amidopyridinate (Ap′), amidinate (Amd), tridentate amidinate bearing 2-methoxyphenyl pendant in a side arm (Amd<sup>OMe</sup>) and pentamethylcyclopentadienyl (Cp*); <i>n</i> = 0, 1) were investigated. CH<sub>2</sub>(C<sub>3</sub>HN<sub>2</sub><i>t</i>Bu<sub>2</sub>-3,5)<sub>2</sub> turned out to be inert in these reactions, while less bulky CH<sub>2</sub>(C<sub>3</sub>HN<sub>2</sub>Me<sub>2</sub>-3,5)<sub>2</sub> easily undergoes metalation by yttrium alkyls. The reaction of Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(THF)<sub>2</sub> with CH<sub>2</sub>(C<sub>3</sub>HN<sub>2</sub>Me<sub>2</sub>-3,5)<sub>2</sub> regardless of the molar ratio of the reagents affords a homoleptic tris­(alkyl) species, Y­[CH­(C<sub>3</sub>HN<sub>2</sub>Me<sub>2</sub>-3,5)<sub>2</sub>]<sub>3</sub> (<b>1</b>). However, the reactions of equimolar amounts of LY­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF)<sub><i>n</i></sub> and CH<sub>2</sub>(C<sub>3</sub>HN<sub>2</sub>Me<sub>2</sub>-3,5)<sub>2</sub> occur selectively with replacement of a sole CH<sub>2</sub>SiMe<sub>3</sub> fragment and afford the related heteroalkyl complexes LY­(CH<sub>2</sub>SiMe<sub>3</sub>)­[CH­(C<sub>3</sub>HN<sub>2</sub>Me<sub>2</sub>-3,5)<sub>2</sub>]­(THF)<sub><i>n</i></sub> (L = Ap′, <i>n</i> = 1 (<b>6</b>); Amd, <i>n</i> = 0 (<b>7</b>); Amd<sup>OMe</sup>, <i>n</i> = 1 (<b>8</b>); Cp*, <i>n</i> = 1 (<b>9</b>)) in good yields. The second equivalent of CH<sub>2</sub>(C<sub>3</sub>HN<sub>2</sub>Me<sub>2</sub>-3,5)<sub>2</sub> does not react with heteroalkyl yttrium complexes. The X-ray studies revealed that in complexes <b>1</b> and <b>6</b>–<b>9</b> the bis­(pyrazolyl)­methyl ligands are bound to the yttrium centers in a similar fashion via one covalent Y–C and two coordination Y–N bonds. Thermal decomposition of complexes <b>6</b>–<b>9</b> (C<sub>6</sub>D<sub>6</sub>, 80 °C) as evidenced by <sup>1</sup>H NMR spectroscopy resulted in SiMe<sub>4</sub> elimination, while no activation of the C–H bonds of bis­(pyrazolyl)­methyl ligands was detected. When <b>6</b> was treated with an equimolar amount of PhSiH<sub>3</sub>, only the YCH<sub>2</sub>SiMe<sub>3</sub> bond selectively underwent σ-bond metathesis and a dimeric yttrium alkyl-hydrido complex, {Ap′Y­[CH­(C<sub>3</sub>HN<sub>2</sub>Me<sub>2</sub>-3,5)<sub>2</sub>]­(μ<sup>2</sup>-H)}<sub>2</sub> (<b>10</b>), was formed. The reaction of <b>6</b> with 2,6-diisopropylaniline also resulted in the selective protonation of the YCH<sub>2</sub>SiMe<sub>3</sub> bond and cleanly afforded alkyl-anilido complex Ap′Y­(NHC<sub>6</sub>H<sub>3</sub><i>i</i>Pr<sub>2</sub>-2,6)­[CH­(C<sub>3</sub>HN<sub>2</sub>Me<sub>2</sub>-3,5)<sub>2</sub>]­(THF) (<b>11</b>). The ternary catalytic systems <b>6</b>–<b>9</b>/borate/Al<i>i</i>Bu<sub>3</sub> (borate = [HNMe<sub>2</sub>Ph]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]; [Ln]:[borate]:[Al<i>i</i>Bu<sub>3</sub>] = 1:1:10) demonstrated moderate catalytic activity in isoprene polymerization; they allow quantitative conversion into polymer of up to 1000 equiv of monomer in 2–4 h. The best activity and 1,4-cis selectivity (83.5%) were demonstrated by amidinato complex <b>8</b>

    Reversible Switching of Coordination Mode of ansa bis(Amidinate) Ligand in Ytterbium Complexes Driven by Oxidation State of the Metal Atom

    No full text
    Reaction of bisamidine C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>-Bu)­NH­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub> (<b>1</b>) and [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>2</sub>Yb­(THF)<sub>2</sub> (THF = tetrahydrofuran) (toluene; room temperature) in a 1:1 molar ratio afforded a bis­(amidinate) Yb<sup>II</sup> complex [C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>-Bu)­N­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­Yb­(THF) (<b>2</b>) in 65% yield. Complex <b>2</b> features unusual κ<sup>1</sup>amide, η<sup>6</sup>-arene coordination of both amidinate fragments to the ytterbium ion, resulting in the formation of a bent bis­(arene) structure. Oxidation of <b>2</b> by Ph<sub>3</sub>SnCl (1:1 molar ratio) or (PhCH<sub>2</sub>S)<sub>2</sub> (1:0.5) leads to the Yb<sup>III</sup> species [C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>-Bu)­N­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­YbCl­(1,2-dimethoxyethane) (<b>3</b>) and {[C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>-Bu)­N­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­Yb­(μ-SCH<sub>2</sub>Ph)}<sub>2</sub> (<b>4</b>), performing “classic” κ<sup>2</sup>N,N′-chelating coordination mode of ansa bis­(amidinate) ligand. By the reduction of <b>3</b> with equimolar amount of sodium naphthalide [C<sub>10</sub>H<sub>8</sub><sup>•–</sup>]­[Na<sup>+</sup>] in THF, complex <b>2</b> can be recovered and restored to a bent bis­(arene) structure. Complex <b>3</b> was also synthesized by the salt metathesis reaction of equimolar amounts of YbCl<sub>3</sub> and the dilithium derivative of <b>1</b> in THF

    Reactions of Bis(alkyl)yttrium Complexes Supported by Bulky N,N Ligands with 2,6-Diisopropylaniline and Phenylacetylene

    No full text
    The reactions of bis­(trimethylsilylmethyl)yttrium complexes supported by bulky amidopyridinate (Ap) and amidinate (Amd) ligands (LY­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF)<sub><i>n</i></sub>: L = Ap, <i>n</i> = 1 (<b>1</b>); L = Amd, <i>n</i> = 1 (<b>2</b>)) with 2,6-diisopropylaniline and phenylacetylene were performed. The reaction of <b>1</b> with an equimolar amount of 2,6-diisopropylaniline occurs with TMS elimination and affords an yttrium alkyl anilido species which was isolated as a DME adduct, ApY­(CH<sub>2</sub>SiMe<sub>3</sub>)­(NH-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­(DME) (<b>3</b>). The protonolysis of <b>3</b> with phenylacetylene results in the alkynyl anilido derivative ApY­(CCPh)­(NH-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­(DME) (<b>6</b>). The treatment of complexes <b>3</b> and <b>6</b> with 2,2′-bipy leads to the formation of the bis­(anilido) derivative ApY­(NH-2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>(bipy) (<b>5</b>). The formation of a dimeric complex containing two ApY fragments linked by two μ<sub>2</sub>-alkynyl groups and a μ-η<sup>2</sup>:η<sup>2</sup>-butatrienediyl fragment, [{AmdY­(μ<sub>2</sub>-CCPh)}<sub>2</sub>(μ<sub>2</sub>-η<sup>2</sup>:η<sup>2</sup>-PhCCCCPh)] (<b>7</b>), was observed in the reaction of <b>2</b> with 2 equiv of phenylacetylene

    Reactions of Bis(alkyl)yttrium Complexes Supported by Bulky N,N Ligands with 2,6-Diisopropylaniline and Phenylacetylene

    No full text
    The reactions of bis­(trimethylsilylmethyl)yttrium complexes supported by bulky amidopyridinate (Ap) and amidinate (Amd) ligands (LY­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF)<sub><i>n</i></sub>: L = Ap, <i>n</i> = 1 (<b>1</b>); L = Amd, <i>n</i> = 1 (<b>2</b>)) with 2,6-diisopropylaniline and phenylacetylene were performed. The reaction of <b>1</b> with an equimolar amount of 2,6-diisopropylaniline occurs with TMS elimination and affords an yttrium alkyl anilido species which was isolated as a DME adduct, ApY­(CH<sub>2</sub>SiMe<sub>3</sub>)­(NH-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­(DME) (<b>3</b>). The protonolysis of <b>3</b> with phenylacetylene results in the alkynyl anilido derivative ApY­(CCPh)­(NH-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­(DME) (<b>6</b>). The treatment of complexes <b>3</b> and <b>6</b> with 2,2′-bipy leads to the formation of the bis­(anilido) derivative ApY­(NH-2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>(bipy) (<b>5</b>). The formation of a dimeric complex containing two ApY fragments linked by two μ<sub>2</sub>-alkynyl groups and a μ-η<sup>2</sup>:η<sup>2</sup>-butatrienediyl fragment, [{AmdY­(μ<sub>2</sub>-CCPh)}<sub>2</sub>(μ<sub>2</sub>-η<sup>2</sup>:η<sup>2</sup>-PhCCCCPh)] (<b>7</b>), was observed in the reaction of <b>2</b> with 2 equiv of phenylacetylene

    Chloro and Alkyl Rare-Earth Complexes Supported by <i>ansa</i>-Bis(amidinate) Ligands with a Rigid <i>o</i>‑Phenylene Linker. Ligand Steric Bulk: A Means of Stabilization or Destabilization?

    No full text
    <i>ansa</i>-Bis­(amidinate) ligands with a rigid <i>o</i>-phenylene linker, C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>Bu)­N­(2,6-R<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­H}<sub>2</sub> (R = Me (<b>1</b>), <i>i</i>Pr (<b>2</b>)), were successfully employed for the synthesis of rare-earth chloro and alkyl species. The reaction of dilithium derivatives of <b>1</b> and <b>2</b> with LnCl<sub>3</sub> (Ln = Y, Lu) afforded the monomeric bis­(amidinate) chloro lanthanide complexes [C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>Bu)­N­(2,6-R<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­Y­(THF)­(μ-Cl)<sub>2</sub>Li­(THF)<sub>2</sub> (R = Me (<b>3</b>), <i>i</i>Pr (<b>5</b>)) and [C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>Bu)­N­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­LuCl­(THF)<sub>2</sub> (<b>4</b>). Bis­(amidinate) ligands in complexes <b>3</b> and <b>4</b> are coordinated to the metal atoms in a tetradentate fashion, while the bulkier ligand in <b>5</b> is tridentate. The alkane elimination reactions of <b>1</b> and <b>2</b> with equimolar amounts of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>Ln­(THF)<sub>2</sub> (Ln = Y, Lu) allowed us to obtain the monoalkyl complexes [C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>Bu)­N­(2,6-R<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)­(THF)<sub><i>n</i></sub> (Ln = Y, R = Me, <i>n</i> = 1 (<b>6</b>); Ln = Lu, R = Me, <i>n</i> = 1 (<b>7</b>); Ln = Y, R = <i>i</i>Pr, <i>n</i> = 2 (<b>8</b>)). The kinetics of thermal decomposition of complexes <b>6</b>–<b>8</b> were measured, and for <b>6</b> the activation energy was obtained from the temperature dependence of the rate constants (<i>E</i><sub>a</sub> = 67.0 ± 1.3 kJ/mol). Complexes <b>6</b> and <b>7</b> turned out to be inert toward H<sub>2</sub> and PhSiH<sub>3</sub>. Surprisingly, complex <b>8</b> was inert toward H<sub>2</sub> and PhSiH<sub>3</sub> but rapidly cleaved C–O bonds of DME. The reaction resulted in the formation of the methoxy complex {[C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>Bu)­N­(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­Y­(μ<sub>2</sub>-OMe)]}<sub>2</sub>(μ<sub>2</sub>-DME) (<b>9</b>) and methyl vinyl ether

    Amido Ln(II) Complexes Coordinated by Bi- and Tridentate Amidinate Ligands: Nonconventional Coordination Modes of Amidinate Ligands and Catalytic Activity in Intermolecular Hydrophosphination of Styrenes and Tolane

    No full text
    Heteroleptic Ln­(II) and Ca­(II) amides [<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-<i>i</i>Pr<sub>2</sub>-2,6)<sub>2</sub>]­MN­(SiMe<sub>3</sub>)<sub>2</sub>(THF) (M = Yb (<b>1Yb</b>), Ca (<b>1Ca</b>)), [2-MeOC<sub>6</sub>H<sub>4</sub>NC­(<i>t</i>Bu)­N­(C<sub>6</sub>H<sub>3</sub>-<i>i</i>Pr<sub>2</sub>-2,6)]­LnN­(SiMe<sub>3</sub>)<sub>2</sub>(THF) (Ln = Sm (<b>2Sm</b>), Yb (<b>2Yb</b>)), and [2-Ph<sub>2</sub>P­(O)­C<sub>6</sub>H<sub>4</sub>NC­(<i>t</i>Bu)­N­(C<sub>6</sub>H<sub>3</sub>-Me<sub>2</sub>-2,6)]­YbN­(SiMe<sub>3</sub>)<sub>2</sub>(THF) (<b>3Yb</b>) coordinated by bi- and tridentate amidinate ligands were obtained by the amine elimination reactions of M­[N­(SiMe<sub>3</sub>)<sub>2</sub>]­(THF)<sub>2</sub> (M = Yb, Sm, Ca) with parent amidines in good yields. Complex [<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-<i>i</i>Pr<sub>2</sub>-2,6)<sub>2</sub>]­SmN­(SiMe<sub>3</sub>)<sub>2</sub> can be obtained only by a salt metathesis reaction of [<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub>)<sub>2</sub>]­SmI­(THF)<sub>2</sub> with NaN­(SiMe<sub>3</sub>)<sub>2</sub>. Unlike <b>1Yb</b> and <b>1Ca</b> in <b>1Sm</b> the amidinate ligand is coordinated to metal ion in κ<sup>1</sup>-amido:η<sup>6</sup>-arene fashion preventing THF coordination. The derivatives of tridentate amidinate ligands bearing pendant donor 2-MeOC<sub>6</sub>H<sub>4</sub> or 2-Ph<sub>2</sub>P­(O)­C<sub>6</sub>H<sub>4</sub>N groups feature nonconventional κ<sup>1</sup>-N,κ<sup>2</sup>-O,η<sup>6</sup>-arene coordination mode. Complexes <b>1Ca</b>, <b>1Sm</b>, <b>1Yb</b>, <b>2Sm</b>, <b>2Yb</b>, and <b>3Yb</b> proved to be efficient catalysts for styrene hydrophosphination with PhPH<sub>2</sub> and Ph<sub>2</sub>PH. In styrene hydrophosphination with PhPH<sub>2</sub> all the catalysts perform excellent chemoselectivity and afford a monoaddition productsecondary phosphine (PhCH<sub>2</sub>CH<sub>2</sub>)­PhPH. Moreover, all the catalysts perform hydrophosphination reactions regioselectively with exclusive formation of the <i>anti-</i>Markovnikov addition product. Within the series of complexes coordinated by the same amidinate ligand catalytic activity decreases in the following order <b>1Ca</b> ≥ <b>1Sm</b>><b>1Yb</b>. The turnover frequencies were in the range of TOF ≈ 0.3–0.7 h<sup>–1</sup>. However, application of tridentate amidinate ligand allowed one to increase catalytic activity significantly: for <b>2Sm</b> TOF was found to be 8.3 h<sup>–1</sup>. For the addition of PhPH<sub>2</sub> to para-substituted styrenes catalyzed by <b>2Sm</b> it was found that electron-withdrawing substituents (Cl, F) do not affect the reaction rate while electron-donating groups (<i>t</i>Bu, OMe) noticeably slow down the reaction

    Amido Analogues of Nonbent Lanthanide (II) and Calcium Metallocenes. Heterolytic Cleavage of π‑Bond Ln–Carbazolyl Ligand Promoted by Lewis Base Coordination

    No full text
    Introduction of four <i>t</i>Bu groups into a carbazol-yl framework leads to switching of the metal–ligand bonding in the Ln­(II) and Ca complexes from σ to π. Complexes [(<i>t</i>Bu<sub>4</sub>Carb)<sub>2</sub>Ln] (Ln = Sm, Eu, Yb, Ca) are amido analogues of metallocenes, which adopt the sandwich structures with parallel disposition of the aromatic ligands and strong contribution of η<sup>3</sup>-mode into η<sup>5</sup> metal–ligand bonding. The DFT calculations demonstrated that the geometry is due to steric effects (presence of the bulky <i>t</i>Bu groups) as well as the maximization of the overlap between the Sm <sup>4</sup>f orbital and the π-type nitrogen lone pair of the carbazol-yl ligand. Coordination of DME to the metal centers in [(<i>t</i>Bu<sub>4</sub>Carb)<sub>2</sub>M] (M = Sm, Yb) results in the heterolytic dissociation of the metal–ligand π-bond and the formation of ionic complexes [<i>t</i>Bu<sub>4</sub>Carb<sup>–</sup>]<sub>2</sub>­[Ln<sup>2+</sup>(DME)<sub><i>n</i></sub>]

    Amido Ln(II) Complexes Coordinated by Bi- and Tridentate Amidinate Ligands: Nonconventional Coordination Modes of Amidinate Ligands and Catalytic Activity in Intermolecular Hydrophosphination of Styrenes and Tolane

    No full text
    Heteroleptic Ln­(II) and Ca­(II) amides [<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-<i>i</i>Pr<sub>2</sub>-2,6)<sub>2</sub>]­MN­(SiMe<sub>3</sub>)<sub>2</sub>(THF) (M = Yb (<b>1Yb</b>), Ca (<b>1Ca</b>)), [2-MeOC<sub>6</sub>H<sub>4</sub>NC­(<i>t</i>Bu)­N­(C<sub>6</sub>H<sub>3</sub>-<i>i</i>Pr<sub>2</sub>-2,6)]­LnN­(SiMe<sub>3</sub>)<sub>2</sub>(THF) (Ln = Sm (<b>2Sm</b>), Yb (<b>2Yb</b>)), and [2-Ph<sub>2</sub>P­(O)­C<sub>6</sub>H<sub>4</sub>NC­(<i>t</i>Bu)­N­(C<sub>6</sub>H<sub>3</sub>-Me<sub>2</sub>-2,6)]­YbN­(SiMe<sub>3</sub>)<sub>2</sub>(THF) (<b>3Yb</b>) coordinated by bi- and tridentate amidinate ligands were obtained by the amine elimination reactions of M­[N­(SiMe<sub>3</sub>)<sub>2</sub>]­(THF)<sub>2</sub> (M = Yb, Sm, Ca) with parent amidines in good yields. Complex [<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-<i>i</i>Pr<sub>2</sub>-2,6)<sub>2</sub>]­SmN­(SiMe<sub>3</sub>)<sub>2</sub> can be obtained only by a salt metathesis reaction of [<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub>)<sub>2</sub>]­SmI­(THF)<sub>2</sub> with NaN­(SiMe<sub>3</sub>)<sub>2</sub>. Unlike <b>1Yb</b> and <b>1Ca</b> in <b>1Sm</b> the amidinate ligand is coordinated to metal ion in κ<sup>1</sup>-amido:η<sup>6</sup>-arene fashion preventing THF coordination. The derivatives of tridentate amidinate ligands bearing pendant donor 2-MeOC<sub>6</sub>H<sub>4</sub> or 2-Ph<sub>2</sub>P­(O)­C<sub>6</sub>H<sub>4</sub>N groups feature nonconventional κ<sup>1</sup>-N,κ<sup>2</sup>-O,η<sup>6</sup>-arene coordination mode. Complexes <b>1Ca</b>, <b>1Sm</b>, <b>1Yb</b>, <b>2Sm</b>, <b>2Yb</b>, and <b>3Yb</b> proved to be efficient catalysts for styrene hydrophosphination with PhPH<sub>2</sub> and Ph<sub>2</sub>PH. In styrene hydrophosphination with PhPH<sub>2</sub> all the catalysts perform excellent chemoselectivity and afford a monoaddition productsecondary phosphine (PhCH<sub>2</sub>CH<sub>2</sub>)­PhPH. Moreover, all the catalysts perform hydrophosphination reactions regioselectively with exclusive formation of the <i>anti-</i>Markovnikov addition product. Within the series of complexes coordinated by the same amidinate ligand catalytic activity decreases in the following order <b>1Ca</b> ≥ <b>1Sm</b>><b>1Yb</b>. The turnover frequencies were in the range of TOF ≈ 0.3–0.7 h<sup>–1</sup>. However, application of tridentate amidinate ligand allowed one to increase catalytic activity significantly: for <b>2Sm</b> TOF was found to be 8.3 h<sup>–1</sup>. For the addition of PhPH<sub>2</sub> to para-substituted styrenes catalyzed by <b>2Sm</b> it was found that electron-withdrawing substituents (Cl, F) do not affect the reaction rate while electron-donating groups (<i>t</i>Bu, OMe) noticeably slow down the reaction

    Chloro and Alkyl Rare-Earth Complexes Supported by <i>ansa</i>-Bis(amidinate) Ligands with a Rigid <i>o</i>‑Phenylene Linker. Ligand Steric Bulk: A Means of Stabilization or Destabilization?

    No full text
    <i>ansa</i>-Bis­(amidinate) ligands with a rigid <i>o</i>-phenylene linker, C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>Bu)­N­(2,6-R<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­H}<sub>2</sub> (R = Me (<b>1</b>), <i>i</i>Pr (<b>2</b>)), were successfully employed for the synthesis of rare-earth chloro and alkyl species. The reaction of dilithium derivatives of <b>1</b> and <b>2</b> with LnCl<sub>3</sub> (Ln = Y, Lu) afforded the monomeric bis­(amidinate) chloro lanthanide complexes [C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>Bu)­N­(2,6-R<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­Y­(THF)­(μ-Cl)<sub>2</sub>Li­(THF)<sub>2</sub> (R = Me (<b>3</b>), <i>i</i>Pr (<b>5</b>)) and [C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>Bu)­N­(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­LuCl­(THF)<sub>2</sub> (<b>4</b>). Bis­(amidinate) ligands in complexes <b>3</b> and <b>4</b> are coordinated to the metal atoms in a tetradentate fashion, while the bulkier ligand in <b>5</b> is tridentate. The alkane elimination reactions of <b>1</b> and <b>2</b> with equimolar amounts of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>Ln­(THF)<sub>2</sub> (Ln = Y, Lu) allowed us to obtain the monoalkyl complexes [C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>Bu)­N­(2,6-R<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)­(THF)<sub><i>n</i></sub> (Ln = Y, R = Me, <i>n</i> = 1 (<b>6</b>); Ln = Lu, R = Me, <i>n</i> = 1 (<b>7</b>); Ln = Y, R = <i>i</i>Pr, <i>n</i> = 2 (<b>8</b>)). The kinetics of thermal decomposition of complexes <b>6</b>–<b>8</b> were measured, and for <b>6</b> the activation energy was obtained from the temperature dependence of the rate constants (<i>E</i><sub>a</sub> = 67.0 ± 1.3 kJ/mol). Complexes <b>6</b> and <b>7</b> turned out to be inert toward H<sub>2</sub> and PhSiH<sub>3</sub>. Surprisingly, complex <b>8</b> was inert toward H<sub>2</sub> and PhSiH<sub>3</sub> but rapidly cleaved C–O bonds of DME. The reaction resulted in the formation of the methoxy complex {[C<sub>6</sub>H<sub>4</sub>-1,2-{NC­(<i>t</i>Bu)­N­(2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)}<sub>2</sub>]­Y­(μ<sub>2</sub>-OMe)]}<sub>2</sub>(μ<sub>2</sub>-DME) (<b>9</b>) and methyl vinyl ether

    Reactivity of Ytterbium(II) Hydride. Redox Reactions: Ytterbium(II) vs Hydrido Ligand. Metathesis of the Yb–H Bond

    No full text
    Oxidation reactions of the Yb­(II) hydride [{<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub>)<sub>2</sub>}­Yb­(μ-H)]<sub>2</sub> (<b>1</b>) with CuCl (1:2 molar ratio) and (PhCH<sub>2</sub>S)<sub>2</sub> (1:1 molar ratio) revealed that the hydrido anion in <b>1</b> is a stronger reductant than the Yb­(II) cation. Both reactions occur with evolution of H<sub>2</sub> and afford the dimeric Yb­(II) species [{<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub>)<sub>2</sub>}­Yb­(μ-X)]<sub>2</sub> (X = Cl (<b>2</b>), SCH<sub>2</sub>Ph (<b>3</b>)) in which a κ<sup>1</sup>-amido,η<sup>6</sup>-arene type of coordination of amidinate ligand is retained. Reaction of <b>1</b> with 2 equiv of (PhCH<sub>2</sub>S)<sub>2</sub> results in oxidation of both Yb­(II) and hydrido centers and leads to the formation of the Yb­(III) complex [{<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub>)<sub>2</sub>}­Yb­(μ-SCH<sub>2</sub>Ph)<sub>2</sub>]<sub>2</sub> (<b>4</b>). Complex <b>4</b> can be also synthesized by oxidation of <b>3</b> with an equimolar amount of (PhCH<sub>2</sub>S)<sub>2</sub>. It was demonstrated that oxidation of the ytterbium center to the trivalent state leads to switching of the coordination mode of amidinate ligand from κ<sup>1</sup>-amido, η<sup>6</sup>-arene to “classical” κ<sup>1</sup>,κ<sup>1</sup>-N,N-chelating. Unlike Yb­(III) bis­(alkyl) species supported by bulky amidopyridinate ligands, the reaction of [{<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub>)<sub>2</sub>}­Yb­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF)] (<b>6</b>) with PhSiH<sub>3</sub> (1:2 molar ratio) occurs with reduction of ytterbium to a divalent state and affords <b>1</b>. Thus, reduction of Yb­(III) to Yb­(II) leads to a change of coordination mode from κ<sup>1</sup>,κ<sup>1</sup>-N,N to κ<sup>1</sup>-N, η<sup>6</sup>-arene. Oxidation of <b>1</b> by 2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NC­(H)­C­(H)NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub> was found to result in oxidation of the hydrido ligand and ytterbium ion and formation of the mixed-valent ion-pair complex [{<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub>)<sub>2</sub>}­Yb­(DME)<sub>2</sub>]<sup>+</sup>[{2,6-<i>i</i>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NC­(H)C­(H)­NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub>}<sub>2</sub>Yb]<sup>−</sup> (<b>5</b>). The σ-bond metathesis reaction of <b>1</b> with Ph<sub>2</sub>PH allowed for the synthesis of the first mixed-ligand hydrido–phosphido Yb­(II) species [{<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub>)<sub>2</sub>}­Yb­(μ-H)­(μ-PPh<sub>2</sub>)­Yb­{<i>t</i>BuC­(NC<sub>6</sub>H<sub>3</sub>-2,6-<i>i</i>Pr<sub>2</sub>)<sub>2</sub>}] (<b>7</b>). The second hydrido ligand cannot be replaced by a phosphido ligand
    corecore