10 research outputs found

    Resonance tunneling of polaritons in 1-D chain with a single defect

    Full text link
    We consider propagation of coupled waves (polaritons) formed by a scalar electromagnetic wave and excitations of a finite one dimensional chain of dipoles. It is shown that a microscopic defect (an impurity dipole) embedded in the chain causes resonance tunneling of the electromagnetic wave with the frequency within the forbidden band between two polariton branches. We demonstrate that resonance tunneling occurs due to local polariton states caused by the defect.Comment: 11 pages, 9 figures (PS-format), RevTe

    Laser irradiated foam targets: absorption and radiative properties

    Get PDF
    An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminium targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target

    Polarization of Radiation in Multipole Jaynes-Cummings Model

    Get PDF
    We discuss the spatial properties of quantum radiation emitted by a multipole transition in a single atom. The qualitative difference between the representations of plane and spherical waves of photons is examined. In particular, the spatial inhomogeneity of the zero-point oscillations of multipole field is shown. We show that the vacuum noise of polarization is concentrated in a certain vicinity of atoms where it strongly exceeds the level predicted by the representation of the plane waves. A new general polarization matrix is proposed. It is shown that the polarization and its vacuum noise strongly depend on the distance from the source.Comment: 23 pages, 3 figure

    Manufacturing of Metal–Diamond Composites with High-Strength CoCrCuxFeNi High-Entropy Alloy Used as a Binder

    No full text
    This paper focuses on the study of the structure and mechanical properties of CoCrCuxFeNi high-entropy alloys and their adhesion to single diamond crystals. CoCrCuxFeNi alloys were manufactured by the powder metallurgy route, specifically via mechanical alloying of elemental powders, followed by hot pressing. The addition of copper led to the formation of a dual-phase FCC + FCC2 structure. The CoCrCu0.5FeNi alloy exhibited the highest ultimate tensile strength (1080 MPa). Reductions in the ductility of the CoCrCuxFeNi HEAs and the tendency for brittle fracture behavior were observed at high copper concentrations. The equiatomic alloys CoCrFeNi and CoCrCuFeNi demonstrated high adhesion strength to single diamond crystals. The diamond surface at the fracture of the composites having the CoCrFeNi matrix had chromium-rich metal matrix regions, thus indicating that chromium carbide, responsible for adhesion, was formed at the composite–diamond interface. Copper-rich areas were detected on the diamond surface within the composites having the CoCrCuFeNi matrix due to the predominant precipitation of the FCC2 phase at the interfaces or the crack propagation along the FCC/FCC2 interface, resulting in the exposure of the Cu-rich FCC2 phase on the surface

    Manufacturing of Metal–Diamond Composites with High-Strength CoCrCu<sub>x</sub>FeNi High-Entropy Alloy Used as a Binder

    No full text
    This paper focuses on the study of the structure and mechanical properties of CoCrCuxFeNi high-entropy alloys and their adhesion to single diamond crystals. CoCrCuxFeNi alloys were manufactured by the powder metallurgy route, specifically via mechanical alloying of elemental powders, followed by hot pressing. The addition of copper led to the formation of a dual-phase FCC + FCC2 structure. The CoCrCu0.5FeNi alloy exhibited the highest ultimate tensile strength (1080 MPa). Reductions in the ductility of the CoCrCuxFeNi HEAs and the tendency for brittle fracture behavior were observed at high copper concentrations. The equiatomic alloys CoCrFeNi and CoCrCuFeNi demonstrated high adhesion strength to single diamond crystals. The diamond surface at the fracture of the composites having the CoCrFeNi matrix had chromium-rich metal matrix regions, thus indicating that chromium carbide, responsible for adhesion, was formed at the composite–diamond interface. Copper-rich areas were detected on the diamond surface within the composites having the CoCrCuFeNi matrix due to the predominant precipitation of the FCC2 phase at the interfaces or the crack propagation along the FCC/FCC2 interface, resulting in the exposure of the Cu-rich FCC2 phase on the surface

    Laser Irradiated Foam Targets: Absorption and Radiative Properties

    No full text
    An experimental campaign to characterize the laser radiation absorption of foam targets and the subsequent emission of radiation from the produced plasma was carried out in the ABC facility of the ENEA Research Center in Frascati (Rome). Different targets have been used: plastic in solid or foam state and aluminum targets. The activated different diagnostics allowed to evaluate the plasma temperature, the density distribution, the fast particle spectrum and the yield of the X-Ray radiation emitted by the plasma for the different targets. These results confirm the foam homogenization action on laser-plasma interaction, mainly attributable to the volume absorption of the laser radiation propagating in such structured materials. These results were compared with simulation absorption models of the laser propagating into a foam target

    “Hydrotriphylites” Li1-xFe1+x(PO4)1-y(OH)4y as Cathode Materials for Li-ion Batteries

    No full text
    Lithium iron phosphate LiFePO4 triphylite is now one of the core positive electrode (cathode) materials enabling the Li-ion battery technology for stationary energy storage applications, which are important for broad implementation of the renewable energy sources. Despite the apparent simplicity of its crystal structure and chemical composition, LiFePO4 is prone to off-stoichiometry and demonstrates rich defect chemistry owing to variations in the cation content and iron oxidation state, and to the redistribution of the cations and vacancies over two crystallographically distinct octahedral sites. The importance of the defects stems from their impact on the electrochemical performance, particularly on limiting the capacity and rate capability through blocking the Li ion diffusion along the channels of the olivine-type LiFePO4 structure. Up to now the polyanionic (i.e. phosphate) sublattice has been considered idle on this playground. Here, we demonstrate that under hydrothermal conditions up to 16% of the phosphate groups can be replaced with hydroxyl groups yielding the Li1-xFe1+x(PO4)1-y(OH)4y solid solutions, which we term “hydrotriphylites”. This substitution has tremendous effect on the chemical composition and crystal structure of the lithium iron phosphate causing abundant population of the Li-ion diffusion channels with the iron cations and off-center Li displacements due to their tighter bonding to oxygens. These perturbations trigger the formation of an acentric structure and increase the activation barriers for the Li-ion diffusion. The “hydrotriphylite”-type substitution also affects the magnetic properties by progressively lowering the Néel temperature. The off-stoichiometry caused by this substitution critically depends on the overall concentration of the precursors and reducing agent in the hydrothermal solutions, placing it among the most important parameters to control the chemical composition and defect concentration of the LiFePO4-based cathodes

    Chemical origins of a fast-charge performance in disordered carbon anodes

    No full text
    Fast charging of lithium-ion cells often causes capacity loss and limited cycle life, hindering their use in high-power applications. Our study employs electrochemical analysis and a multiphysics model to identify and quantify chemical and physical constraints during fast charging, comparing state-of-the-art graphite and nanocluster carbon (nC, a disordered carbon) anodes. The combination of modeling material phase separation phenomena with ion-electron transfer theory reveals significant insight. The active material strongly influences charge transfer kinetics and solid-state lithium diffusion. Unlike graphite, nC supports lithium insertion without phase separation, enabling faster lithium diffusion, better volume utilization, and lower charge transfer resistance. We demonstrate practical implications of these material phenomena through multilayer pouch cells made with nC anodes, which withstand over 5000 fast-charge cycles at 2C without significant degradation (<10% at reference 0.2C)
    corecore