10 research outputs found

    Radiation Induces Distinct Changes in Defined Subpopulations of Neural Stem and Progenitor Cells in the Adult Hippocampus

    Get PDF
    While irradiation can effectively treat brain tumors, this therapy also causes cognitive impairments, some of which may stem from the disruption of hippocampal neurogenesis. To study how radiation affects neurogenesis, we combine phenotyping of subpopulations of hippocampal neural stem and progenitor cells with double- and triple S-phase labeling paradigms. Using this approach, we reveal new features of division, survival, and differentiation of neural stem and progenitor cells after exposure to gamma radiation. We show that dividing neural stem cells, while susceptible to damage induced by gamma rays, are less vulnerable than their rapidly amplifying progeny. We also show that dividing stem and progenitor cells that survive irradiation are suppressed in their ability to replicate 0.5–1 day after the radiation exposure. Suppression of division is also observed for cells that entered the cell cycle after irradiation or were not in the S phase at the time of exposure. Determining the longer term effects of irradiation, we found that 2 months after exposure, radiation-induced suppression of division is partially relieved for both stem and progenitor cells, without evidence for compensatory symmetric divisions as a means to restore the normal level of neurogenesis. By that time, most mature young neurons, born 2–4 weeks after the irradiation, still bear the consequences of radiation exposure, unlike younger neurons undergoing early stages of differentiation without overt signs of deficient maturation. Later, 6 months after an exposure to 5 Gy, cell proliferation and neurogenesis are further impaired, though neural stem cells are still available in the niche, and their pool is preserved. Our results indicate that various subpopulations of stem and progenitor cells in the adult hippocampus have different susceptibility to gamma radiation, and that neurogenesis, even after a temporary restoration, is impaired in the long term after exposure to gamma rays. Our study provides a framework for investigating critical issues of neural stem cell maintenance, aging, interaction with their microenvironment, and post-irradiation therapy

    Spatiotemporal 3D image registration for mesoscale studies of brain development

    Get PDF
    Comparison of brain samples representing different developmental stages often necessitates registering the samples to common coordinates. Although the available software tools are successful in registering 3D images of adult brains, registration of perinatal brains remains challenging due to rapid growth-dependent morphological changes and variations in developmental pace between animals. To address these challenges, we introduce CORGI (Customizable Object Registration for Groups of Images), an algorithm for the registration of perinatal brains. First, we optimized image preprocessing to increase the algorithm's sensitivity to mismatches in registered images. Second, we developed an attention-gated simulated annealing procedure capable of focusing on the differences between perinatal brains. Third, we applied classical multidimensional scaling (CMDS) to align ("synchronize") brain samples in time, accounting for individual development paces. We tested CORGI on 28 samples of whole-mounted perinatal mouse brains (P0-P9) and compared its accuracy with other registration algorithms. Our algorithm offers a runtime of several minutes per brain on a laptop and automates such brain registration tasks as mapping brain data to atlases, comparing experimental groups, and monitoring brain development dynamics

    DALMATIAN: An Algorithm for Automatic Cell Detection and Counting in 3D

    No full text
    Current 3D imaging methods, including optical projection tomography, light-sheet microscopy, block-face imaging, and serial two photon tomography enable visualization of large samples of biological tissue. Large volumes of data obtained at high resolution require development of automatic image processing techniques, such as algorithms for automatic cell detection or, more generally, point-like object detection. Current approaches to automated cell detection suffer from difficulties originating from detection of particular cell types, cell populations of different brightness, non-uniformly stained, and overlapping cells. In this study, we present a set of algorithms for robust automatic cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain regions and individual brain sections. We used watershed procedure to split regional maxima representing overlapping cells. We developed a bootstrap Gaussian fit procedure to evaluate the statistical significance of detected cells. We compared cell detection quality of our algorithm and other software using 42 samples, representing 6 staining and imaging techniques. The results provided by our algorithm matched manual expert quantification with signal-to-noise dependent confidence, including samples with cells of different brightness, non-uniformly stained, and overlapping cells for whole brain regions and individual tissue sections. Our algorithm provided the best cell detection quality among tested free and commercial software

    Suppressed neurogenesis without cognitive deficits: effects of fast neutron irradiation in mice.

    No full text
    This study assessed the effects of combined low-dose neutron and γ-ray irradiation on hippocampal neurogenesis and hippocampal-dependent memory. Neural progenitor cell division and survival were evaluated in brain sections and whole hippocampal preparations following head irradiation at a dose of 0.34 Gy for neutron radiation and 0.36 Gy for γ-ray radiation. Hippocampal-dependent memory formation was tested in a contextual fear conditioning task following irradiation at doses of 0.4 Gy for neutron radiation and 0.42 Gy for γ-ray radiation. Cell division was suppressed consistently along the entire dorsoventral axis of the hippocampus 24 h after the irradiation, but quiescent stem cells remained unaffected. The control and irradiated mice showed no differences in terms of exploratory behavior or anxiety 6 weeks after the irradiation. The ability to form hippocampus-dependent memory was also unaffected. The data may be indicative of a negligible effect of the low-dose of fast neutron irradiation and the neurogenesis suppression on animal behavior at 6 weeks after irradiation

    Slowly Reducible Genetically Encoded Green Fluorescent Indicator for In Vivo and Ex Vivo Visualization of Hydrogen Peroxide

    No full text
    Hydrogen peroxide (H2O2) plays an important role in modulating cell signaling and homeostasis in live organisms. The HyPer family of genetically encoded indicators allows the visualization of H2O2 dynamics in live cells within a limited field of view. The visualization of H2O2 within a whole organism with a single cell resolution would benefit from a slowly reducible fluorescent indicator that integrates the H2O2 concentration over desired time scales. This would enable post hoc optical readouts in chemically fixed samples. Herein, we report the development and characterization of NeonOxIrr, a genetically encoded green fluorescent indicator, which rapidly increases fluorescence brightness upon reaction with H2O2, but has a low reduction rate. NeonOxIrr is composed of circularly permutated mNeonGreen fluorescent protein fused to the truncated OxyR transcription factor isolated from E. coli. When compared in vitro to a standard in the field, HyPer3 indicator, NeonOxIrr showed 5.9-fold higher brightness, 15-fold faster oxidation rate, 5.9-fold faster chromophore maturation, similar intensiometric contrast (2.8-fold), 2-fold lower photostability, and significantly higher pH stability both in reduced (pKa of 5.9 vs. ≥7.6) and oxidized states (pKa of 5.9 vs.≥ 7.9). When expressed in the cytosol of HEK293T cells, NeonOxIrr demonstrated a 2.3-fold dynamic range in response to H2O2 and a 44 min reduction half-time, which were 1.4-fold lower and 7.6-fold longer than those for HyPer3. We also demonstrated and characterized the NeonOxIrr response to H2O2 when the sensor was targeted to the matrix and intermembrane space of the mitochondria, nucleus, cell membranes, peroxisomes, Golgi complex, and endoplasmic reticulum of HEK293T cells. NeonOxIrr could reveal endogenous reactive oxygen species (ROS) production in HeLa cells induced with staurosporine but not with thapsigargin or epidermal growth factor. In contrast to HyPer3, NeonOxIrr could visualize optogenetically produced ROS in HEK293T cells. In neuronal cultures, NeonOxIrr preserved its high 3.2-fold dynamic range to H2O2 and slow 198 min reduction half-time. We also demonstrated in HeLa cells that NeonOxIrr preserves a 1.7-fold ex vivo dynamic range to H2O2 upon alkylation with N-ethylmaleimide followed by paraformaldehyde fixation. The same alkylation-fixation procedure in the presence of NP-40 detergent allowed ex vivo detection of H2O2 with 1.5-fold contrast in neuronal cultures and in the cortex of the mouse brain. The slowly reducible H2O2 indicator NeonOxIrr can be used for both the in vivo and ex vivo visualization of ROS. Expanding the family of fixable indicators may be a promising strategy to visualize biological processes at a single cell resolution within an entire organism

    Radiation Damage

    No full text
    corecore