60,796 research outputs found

    Particle Identification in the ALICE Experiment

    Full text link
    The particle identification capabilities of the ALICE experiment are unique among the four major LHC experiments. The working principles and excellent performance of the central barrel detectors in a high-multiplicity environment are presented as well as two physics examples: the extraction of transverse momentum spectra of charged pions, kaons, protons, and the observation of the anti-4He-nucleus.Comment: Quark Matter 2011 Proceeding

    Voyager observations of Jovian millisecond radio bursts

    Get PDF
    Voyager Planetary Radio Astronomy data collected over 30-day intervals centered on the two close encounters with Jupiter were utilized to study the characteristics of millisecond-duration radio bursts (s-bursts) at frequencies between 5 and 15 MHz. In this frequency range, s-bursts are found to occur almost independently of Central Meridian Longitude and to depend entirely on the phase of Io with respect to the observer's planetocentric line of sight. Individual bursts typically cover a total frequency range of about 1.5 to 3 MHz, and they are usually strongly circularly polarized. Most bursts in a particular s-burst storm will exhibit the same polarization sense (either right-hand or left-hand), and there is some evidence for a systematic pattern in which one polarizations sense is preferred over the other as a function of Io phase and Central Meridian Longitude. These data are all suggestive of a radio source that is located along the instantaneous Io flux tube and that extends over a linear dimension of 5000 km along the field lines in both the northern and southern Hemispheres

    Results of long-term synoptic monitoring of Jupiter's decametric radiation

    Get PDF
    Results of the analysis of the large, homogeneous set of measurements of Jupiter's emission at 16.7 and 22.2 MHz for the apparitions during the period 1966-1974 were presented. An update of the radio rotation period determination which includes provision for beaming effects due to variations in the Jovicentric declination of the earth was presented. Some estimates of the magnitude of possible long-term variations in the rotation period were also discussed. The data clearly shows the Io-independent emission features associated with the System III central meridian longitudes of all three major Io-related source regions. There is also some evidence for heretofore unrecognized Io-related emission features which are apparently independent of the central meridian longitude. The possibility of three kinds of emission are suggested: (1) Io-stimulated, sharply beamed emission, (2) Io-independent, sharply beamed emission, and (3) Io-stimulated, broadly beamed emission

    Relationship between auroral substorms and the occurrence of terrestrial kilometric radiation

    Get PDF
    The correlation between magnetospheric substorms as inferred from the AE(11) index and the occurrence of terrestrial kilometric radiation (TKR) is examined. It is found that AE and TKR are well correlated when observations are made from above the 15-03 hr local time zone and are rather poorly correlated over the 03-15 hr zone. High-resolution dynamic spectra obtained during periods of isolated substorms indicate that low-intensity, high-frequency TKR commences at about the same time as the substorm phase. The substorm expansion phase corresponds to a rapid intensification and bandwidth increase of TKR. When combined with previous results, these new observations imply that many TKR events begin at low altitudes and high frequencies (about 400-500 kHz) and spread to higher altitudes and lower frequencies as the substorm expands

    Terrestrial kilometric radiation: 3-average spectral properties

    Get PDF
    A study is presented of the average spectral properties of terrestrial kilometric radiation (TKR) derived from observations made by radio astronomy experiments onboard the IMP-6 and RAE-2 spacecraft. As viewed from near the equatorial plane, TKR is most intense and most often observed in the 21-24 hr local time zone and is rarely seen in the 09-12 hr zone. The peak flux density usually occurs near 240 kHz, but there is evidence that the peak occurs at a somewhat lower frequency on the dayside. The frequency of the peak in the average flux spectrum varies inversely with increasing substorm activity as inferred from the auroral electrojet index (AE) from a maximum near 300 kHz during very quiet times to a minimum below 200 kHz during very disturbed times. The absolute flux levels in the 100-600 kHz TKR band increase significantly with increasing AE. The average power associated with a particular source region seems to decrease rapidly with increasing source altitude

    Terrestrial kilometric radiation: 1: Spatial structures studies

    Get PDF
    Observations are presented of lunar occultations of the earth at 250 kHz obtained with the Radio-Astronomy-Explorer-2 satellite which were used to derive two dimensional maps of the location of the sources of terrestrial kilometric radiation (TKR). By examining the two dimensional source distributions as a function of the observer's location (lunar orbit) with respect to the magnetosphere, the average three dimensional location of the emission regions can be estimated. Although TKR events at 250 kHz can often be observed at projected distances corresponding to the 250 kHz electron gyro or plasma level (approximately 2 earth radii), many events are observed much farther from the earth (between 5 and 15 earth radii). Dayside emission apparently in the region of the polar cusp and the magnetosheath and night emission associated with regions of the magnetotail are examined. The nightside emission is suggestive of a mechanism involving plasma sheet electron precipitation in the pre-midnight sector

    Moral hazard and lack of commitment in dynamic economies

    Get PDF
    We revisit the role of limited commitment in a dynamic risk-sharing setting with private information. We show that a Markov-perfect equilibrium, in which agent and insurer cannot commit beyond the current period, and an infinitely-long contract to which only the insurer can commit, implement identical consumption, effort and welfare outcomes. Unlike contracts with full commitment by the insurer, Markov-perfect contracts feature non-trivial and determinate asset dynamics. Numerically, we show that Markov-perfect contracts provide sizable insurance, especially at low asset levels, and are able to explain a significant part of wealth inequality beyond what can be explained by self-insurance. The welfare gains from resolving the commitment friction are larger than those from resolving the moral hazard problem at low asset levels, while the opposite holds for high asset levels.Moral hazard ; Risk
    corecore