20 research outputs found

    Reactive Oxygen Species and Bone Fragility

    Get PDF
    Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. In the last decade, studies have indicated that ROS, including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. Osteoclasts (OCs), cells specialized for bone resorption, utilize ROS as second messengers during receptor activator of NF-κB ligand (RANKL)-induced differentiation and activation. The purpose of this chapter is to explore the current understanding of reactive oxygen species involvement in bone pathophysiology

    Is Homocysteine a Marker or a Risk Factor: A Question Still Waits for an Answer

    Get PDF
    Homocysteine, a non-proteinogenic sulfur-containing amino acid, was discovered in 1932, and 30 years passed until, in 1969, for the first time, its involvement in pathology was reported. It was only in the last two decades that homocysteine has become a subject of scientific interest and has begun to be intensively studied. A large number of scientists consider homocysteine as an independent risk factor particularly for cardiovascular disease, while others indicate homocysteine as a marker of this disease. Both sides bring scientific arguments for their opinions, yet the dilemma of homocysteine characterization still persists. Although the reported studies do not lead to a unique answer, it is generally accepted that homocysteine is associated with vascular dysfunction. Numerous scientific data show that the link between homocysteine and inflammation is achieved via the reactive oxygen species (ROS) pathway. The latest data indicate hydrogen peroxide as a possible messenger in cellular signaling in physiological or pathological processes and present the consequences of disturbing the oxidation-reducing balance. In this chapter, we present the latest scientific evidences gathered from the literature for both hypotheses regarding homocysteine involvement in pathology, and we propose a possible mechanism of action for homocysteine, based on our preliminary (yet unpublished) work

    SURVIVAL OF NONAGENARIAN PATIENTS WITH HIP FRACTURES: A COHORT STUDY

    No full text
    <div><p>ABSTRACT Objective: The objective of this study was to assess survival and factors that may influence survival in nonagenarians with hip fracture. Methods: We retrospectively analyzed 134 nonagenarian patients admitted for hip fractures over a period of 9 years, and reviewed medical records and survival data from the National Population Register. The analysis included demographic data, ASA score, surgical delay, type of treatment, and mortality. Results: Mean patient age was 92.53 years (range 90-103 years). Of the total, 35.8% of the fractures involved the femoral neck and 64.2% were in the trochanteric region. Overall mortality was 18.7% at 30 days, and 9% at one year. Mean survival for the entire sample was 683±78.1 days, with a median of 339 days; survival in men and women was 595±136.8 days and 734±94.6 days, respectively. We found that type of fracture (p=0.026) and ASA score (p=0.004) were the main factors influencing survival. Kaplan-Meier survival analysis indicated that patients with extracapsular fractures treated by internal fixation had a better survival rate (p=0.047). There was no significant differences between sexes (p = 0.102) or diagnosis (p = 0.537) Conclusion: Although nonagenarian patients have numerous comorbidities, surgical treatment using internal fixation seems superior to a conservative approach. Level of Evidence III, Retrospective Comparative Study.</p></div

    Experimental Investigations on the Long Term Material Properties of Rubberized Portland Cement Concrete

    No full text
    The paper presents the results of a research work aimed at assessing the long-term strength and elastic properties of rubberized concrete. The parameters of the research were the rubber replacement of fine aggregates and the age of testing the specimens. Compressive and splitting tensile strength of concrete cylinders were obtained at the age of 5 years, coupled with the static and dynamic modulus of elasticity of all concrete specimens. Additionally, the material damping coefficient was assessed by means of non-destructive tests. The density of the rubberized concrete decreases with the percentage replacement of natural sand by rubber aggregates. A significant drop in the values of density after 5 years was observed for specimens made with rubberized concrete. The static and the dynamic moduli of elasticity decrease with the increase in rubber content. A similar trend is observed for the compressive and tensile splitting strength

    Influence of Concrete Strength Class on the Long-Term Static and Dynamic Elastic Moduli of Concrete

    No full text
    Construction materials, among which concrete is by far the most used, have followed a trend of continuously increasing demand in real estate. A relatively small number of research works have been published on the long-term material properties of concrete in comparison to studies reporting their findings at standard curing ages of 28 days. This is due, in part, to the length of time one must wait until the intended age of concrete is reached. The present paper contributes to filling this gap of information in terms of the strength and dynamic elastic properties of concrete. The dynamic modulus of elasticity may be used to assess the static modulus of elasticity (Young’s modulus), a key property used during the design stage of a structure, in a non-destructive manner. This paper presents the results obtained from laboratory tests on the long-term (6 years) characterization of concrete from the point of view of dynamic shear and longitudinal moduli of elasticity, dynamic Poisson’s ratio, static modulus of elasticity, compressive and tensile splitting strengths, and their change depending on the concrete strength class

    Influence of a Novel Carbon-Based Nano-Material on the Thermal Conductivity of Mortar

    No full text
    The paper presents the results of research work to assess the thermal conductivity of mortar incorporating a novel carbon-based nano-material (CBN). The data from the laboratory tests served as the starting point in training an artificial neural network (ANN) based on the Levenberg–Marquardt backpropagation algorithm that was used to predict the values of the thermal conductivity at later ages. The used CBNs were essential precursors of multi-walled carbon nano-tubes but different from their counterparts in the fact that they were capped at the ends. This configuration should result in lower surface tension and should prevent the bundling even without the use of surfactants and sonication. The obtained results show that the mortar mixes with CBN exhibit higher values for the thermal coefficient at early ages compared to the reference mix, even at very low percentages of CBN by weight of cement. The ANN is able to accurately predict the experimental results both at 28 days and at later ages. The obtained results should serve as the starting point for further investigations into the microstructure of cement-based materials enhanced with CBNs

    Multifunctional Platforms Based on Graphene Oxide and Natural Products

    No full text
    Background and objectives: In the last few years, graphene oxide has attracted much attention in biomedical applications due to its unique physico-chemical properties and can be used as a carrier for both hydrophilic and/or hydrophobic biomolecules. The purpose of this paper was to synthesize graphene oxide and to obtain multifunctional platforms based on graphene oxide as a nanocarrier loaded with few biologically active substances with anticancer, antimicrobial or anti-inflammatory properties such as gallic acid, caffeic acid, limonene and nutmeg and cembra pine essential oils. Materials and Methods: Graphene oxide was obtained according to the method developed by Hummers and further loaded with biologically active agents. The obtained platforms were characterized using FTIR, HPLC, TGA, SEM, TEM and Raman spectroscopy. Results: Gallic acid released 80% within 10 days but all the other biologically active agents did not release because their affinity for the graphene oxide support was higher than that of the phosphate buffer solution. SEM characterization showed the formation of nanosheets and a slight increase in the degree of agglomeration of the particles. The ratio I2D/IG for all samples was between 0.18 for GO-cembra pine and 0.27 for GO-limonene, indicating that the GO materials were in the form of multilayers. The individual GO sheets were found to have less than 20 &#181;m, the thickness of GO was estimated to be ~4 nm and an interlayer spacing of about 2.12 &#197;. Raman spectroscopy indicated that the bioactive substances were adsorbed on the surface and no degradation occurred during loading. Conclusions: These findings encourage this research to further explore, both in vitro and in vivo, the biological activities of bioactive agents for their use in medicine

    Connections between Orthopedic Conditions and Oxidative Stress: Current Perspective and the Possible Relevance of Other Factors, Such as Metabolic Implications, Antibiotic Resistance, and COVID-19

    No full text
    The general opinion in the literature is that these topics remain clearly understudied and underrated, with many unknown aspects and with controversial results in the respective areas of research. Based on the previous experience of our groups regarding such matters investigated separately, here we attempt a short overview upon their links. Thus, we summarize here the current state of knowledge regarding the connections between oxidative stress and: (a) orthopedic conditions; (b) COVID-19. We also present the reciprocal interferences among them. Oxidative stress is, of course, an interesting and continuously growing area, but what exactly is the impact of COVID-19 in orthopedic patients? In the current paper we also approached some theories on how oxidative stress, metabolism involvement, and even antibiotic resistance might be influenced by either orthopedic conditions or COVID-19. These manifestations could be relevant and of great interest in the context of this current global health threat; therefore, we summarize the current knowledge and/or the lack of sufficient evidence to support the interactions between these conditions
    corecore