4 research outputs found

    Representative chromatograms from HPLC-ELSD depicting saccharide character of the four samples (A, DP 3; B, DP 3–4, C: DP 5–6, and D: DP 6–7) produced through column chromatography.

    No full text
    <p>Representative chromatograms from HPLC-ELSD depicting saccharide character of the four samples (A, DP 3; B, DP 3–4, C: DP 5–6, and D: DP 6–7) produced through column chromatography.</p

    Proportion correct<sup>a</sup> and discriminability (<i>d’</i> value)<sup>b</sup> of target stimuli in the absence and presence of lactisole.

    No full text
    <p>Proportion correct<sup>a</sup> and discriminability (<i>d’</i> value)<sup>b</sup> of target stimuli in the absence and presence of lactisole.</p

    Chemical characterization of four MOS samples prepared for psychophysical testing.

    No full text
    <p>Chemical characterization of four MOS samples prepared for psychophysical testing.</p

    Human taste detection of glucose oligomers with low degree of polymerization

    No full text
    <div><p>Studies have reported that some animals, including humans, can taste mixtures of glucose oligomers (i.e., maltooligosaccharides, MOS) and that their detection is independent of the known T1R2/T1R3 sweet taste receptor. In an effort to understand potential mechanisms underlying the taste perception of glucose oligomers in humans, this study was designed to investigate: 1) the variability of taste sensitivity to MOS with low degree-of-polymerization (DP), and 2) the potential role of hT1R2/T1R3 in the MOS taste detection. To address these objectives, a series of food grade, narrow-DP-range MOS were first prepared (DP 3, 3–4, 5–6, and 6–7) by fractionating disperse saccharide mixtures. Subjects were then asked to discriminate these MOS stimuli as well as glucose (DP 1) and maltose (DP 2) from blanks after the stimuli were swabbed on the tongue. All stimuli were presented at 75 mM with and without a sweet taste inhibitor (lactisole). An Ξ±-glucosidase inhibitor (acarbose) was added to all test stimuli to prevent oral digestion of glucose oligomers. Results showed that all six stimuli were detected with similar discriminability in normal tasting conditions. When the sweet receptor was inhibited, DP 1, 2, and 3 were not discriminated from blanks. In contrast, three higher-DP paired MOS stimuli (DP 3–4, 5–6, and 6–7) were discriminated from blanks at a similar degree. Overall, these results support the presence of a sweet-independent taste perception mechanism that is stimulated by MOS greater than three units.</p></div
    corecore