1 research outputs found

    Development and Application of a New Theoretical Model for Additive Impacts on Mineral Crystallization

    No full text
    Additives play an important role in crystallization controls in both natural and industrial processes. Due to the lack of theoretical understanding of how additives work, the use and design of additives in various disciplines are mostly conducted empirically. This study has developed a new theoretical model to predict the additive impacts on crystallization based on the classical nucleation theory and regular solution theory. The new model assumes that additives can impact the nucleus partial molar volume and the apparent saturation status of the crystallization minerals. These two impacts were parametrized to be proportional to additive concentrations and vary with inhibitors. As a practical example, this new model has been used to predict barite induction times without inhibitors from 4 to 250 °C and in the presence of eight different scale inhibitors from 4 to 90 °C. The predicted induction times showed close agreement with the experimental data published previously or produced in this study. Such agreement indicates that this new theoretical model can be widely adopted in various disciplines to evaluate mineral formation kinetics, elucidate mechanisms of additive impacts, predict minimum effective dosage (MED) of additives, and guide the design of new additives, to mention a few
    corecore