6 research outputs found

    A systematic review of optical coherence tomography findings in adults with mild traumatic brain injury

    Get PDF
    Mild traumatic brain injury (mTBI) is common with many patients suffering disabling long-term sequelae, with visual symptoms frequently reported. There are no objective biomarkers of mTBI that are routinely used in clinical practice. Optical coherence tomography (OCT) has been used in mTBI research, as it enables visualisation of the neuroretina, allowing measurement of the retinal nerve fibre layer and ganglion cell layer. This systematic review aims to appraise the available literature and assess whether there are significant changes within the retinal nerve fibre layer and ganglion cell layer in subjects after mTBI. A systematic review was carried out in accordance with PRISMA guidelines and registered with PROSPERO (Number: CRD42022360498). Four databases were searched for relevant literature published from inception until 1 September 2022. Abstracts and full texts were screened by three independent reviewers. Initial screening of databases yielded 341 publications, of these, three fulfilled all the criteria for inclusion. All three studies showed thinning of the retinal nerve fibre layer, whereas there were no significant changes in the ganglion cell layer. This systematic review demonstrated that thinning of the retinal nerve fibre layer (but not of the ganglion cell layer) is associated with mTBI. It provides preliminary evidence for the use of the retinal nerve fibre layer as a potential biomarker of damage to the visual system in mTBI. Further prospective longitudinal studies ensuring uniform diagnosis and accurate phenotyping of mTBI are needed to understand the effects on the visual system and potential of OCT as a prognostic biomarker

    Evaluation of diurnal and postural intracranial pressure employing telemetric monitoring in idiopathic intracranial hypertension

    No full text
    OBJECTIVES: Intracranial pressure (ICP) has been thought to vary diurnally. This study evaluates diurnal ICP measurements and quantifies changes in ICP occurring with changes in body posture in active idiopathic intracranial hypertension (IIH). METHODS: This prospective observational study utilized telemetric ICP monitoring in people with active IIH. Participants had the Raumedic p-Tel ICP intraparenchymal device (Raumedic, Hembrechts, Germany) surgically inserted. Changes in ICP in the supine position were evaluated. Then, the ICP was measured in the standing, sitting, supine, left lateral decubitus positions and with coughing and bending. Ultimately, changes in ICP over the course of 24 h were recorded. ISRCTN registration number 12678718. RESULTS: 15 women were included, mean (standard deviation) age 29.5 (9.5) years, body mass index 38.1 (6.2) kg/m(2), and baseline mean ICP of 21.2 (4.8) mmHg (equivalent to 28.8 (6.5) cmCSF). Mean ICP rose with the duration in the supine position 1.2 (3.3) mmHg over 5-minutes (p = 0.175), 3.5 (2.8) mmHg over 30-minutes (p = 0.0002) and by a further 2.1 (2.2) mmHg over 3 h (p = 0.042). Mean ICP decreased by 51% when moving from the supine position to standing (21.2 (4.8) mmHg to 10.3 (3.7) mmHg respectively, p = 0.0001). Mean ICP increased by 13% moving from supine to the left lateral decubitus position (21.2 (4.8) mmHg to 24.0 (3.8) mmHg, p = 0.028). There was no significant difference in ICP measurements at any point during the daytime, or between 5-minute standing or supine recordings and prolonged ambulatory daytime and end of night supine recordings respectively. ICP, following an initial drop, increased progressively in conjunction with lying supine position from 23:00 h to 07:00 h by 34% (5.2 (1.9) mmHg, p = 0.026). CONCLUSION: This analysis demonstrated that ICP does not appear to have a diurnal variation in IIH, but varies by position and duration in the supine position. ICP rose at night whilst the patient was continuously supine. Furthermore, brief standing and supine ICP measures in the day predicted daytime prolonged ambulatory measures and end of night peak ICP respectively. This knowledge gives reassurance that ICP can be accurately measured and compared at any time of day in an ambulant IIH patient. These are useful findings to inform clinical measurements and in the interpretation of ICP analyses in IIH. TRIAL REGISTRATION: ISTCRN (12678718)

    Dysregulation of amino acid, lipid and acylpyruvate metabolism in idiopathic intracranial hypertension:a non-targeted case control and longitudinal metabolomic study

    No full text
    Background: Idiopathic intracranial hypertension (IIH) is characterized by increased intracranial pressure occurring predominantly in women with obesity. The pathogenesis is not understood. We have applied untargeted metabolomic analysis using ultrahigh-performance liquid chromatography-mass spectrometry to characterize the cerebrospinal fluid (CSF) and serum in IIH compared to control subjects. Methods and findings: Samples were collected from IIH patients (n = 66) with active disease at baseline and again at 12 months following therapeutic weight loss. Control samples were collected from gender- and weight-matched healthy controls (n = 20). We identified annotated metabolites in CSF, formylpyruvate and maleylpyruvate/fumarylpyruvate, which were present at lower concentrations in IIH compared to control subjects and returned to values observed in controls following weight loss. These metabolites showed the opposite trend in serum at baseline. Multiple amino acid metabolic pathways and lipid classes were perturbed in serum and CSF in IIH alone. Serum lipid metabolite pathways were significantly increased in IIH. Conclusions: We observed a number of differential metabolic pathways related to amino acid, lipid, and acylpyruvate metabolism, in IIH compared to controls. These pathways were associated with clinical measures and normalized with disease remission. Perturbation of these metabolic pathways provides initial understanding of disease dysregulation in IIH
    corecore