166 research outputs found

    Pilot Study of Gaze Scanning and Intersection Detection Failures by Drivers with Hemianopia

    Get PDF
    In a prior study, intersection detection failures of individuals with hemianopia were strongly associated with inadequate head scanning; however, eye position was not tracked. In this pilot study, we tracked eye and head movements, and examined the relationship between gaze scanning and detection of pedestrians at intersections in a driving simulator. Gaze scan deficits, in particular not scanning sufficiently far into the blind hemifield, were the main reason for detection failures at the extreme edge of the clear-sight triangle in the blind hemifield. In addition, the gaze data revealed detection failures due to looked-but-failed-to-see events. The results suggest that HH drivers may be at increased risk for collisions at intersections

    Visual Attention Measures Predict Pedestrian Detection in Central Field Loss: A Pilot Study

    Get PDF
    Purpose The ability of visually impaired people to deploy attention effectively to maximize use of their residual vision in dynamic situations is fundamental to safe mobility. We conducted a pilot study to evaluate whether tests of dynamic attention (multiple object tracking; MOT) and static attention (Useful Field of View; UFOV) were predictive of the ability of people with central field loss (CFL) to detect pedestrian hazards in simulated driving. Methods: 11 people with bilateral CFL (visual acuity 20/30-20/200) and 11 age-similar normally-sighted drivers participated. Dynamic and static attention were evaluated with brief, computer-based MOT and UFOV tasks, respectively. Dependent variables were the log speed threshold for 60% correct identification of targets (MOT) and the increase in the presentation duration for 75% correct identification of a central target when a concurrent peripheral task was added (UFOV divided and selective attention subtests). Participants drove in a simulator and pressed the horn whenever they detected pedestrians that walked or ran toward the road. The dependent variable was the proportion of timely reactions (could have stopped in time to avoid a collision). Results: UFOV and MOT performance of CFL participants was poorer than that of controls, and the proportion of timely reactions was also lower (worse) (84% and 97%, respectively; p = 0.001). For CFL participants, higher proportions of timely reactions correlated significantly with higher (better) MOT speed thresholds (r = 0.73, p = 0.01), with better performance on the UFOV divided and selective attention subtests (r = −0.66 and −0.62, respectively, p<0.04), with better contrast sensitivity scores (r = 0.54, p = 0.08) and smaller scotomas (r = −0.60, p = 0.05). Conclusions: Our results suggest that brief laboratory-based tests of visual attention may provide useful measures of functional visual ability of individuals with CFL relevant to more complex mobility tasks

    Simulator-Based Driving with Hemianopia: Detection Performance and Compensatory Behaviors on Approach to Intersections

    Get PDF
    OBJECTIVES In 22 states people with homonymous hemianopia (complete loss of the visual field on the sameside in both eyes) are explicitly prohibited from driving, as they do not meet the minimum visualfield requirements for driver licensing. However, there is little scientific evidence derived eitherfrom on-road or driving simulator studies about the safety of driving with hemianopia. If the eyeand head were kept stationary, people with hemianopia would not detect anything on the side ofthe field loss. In the real world, however, they may be able to compensate for the loss byexploring the affected (blind) side using head- and eye-scanning. It has been reported that inHolland (where driving with hemianopia is permitted), driving examiners consider increasedhead-scanning (especially on approach to intersections) to be an effective compensation forperipheral visual field defects (Coeckelbergh et al., 2002). Whether increased head-scanningwhile driving results in better detection performance has never been quantitatively investigated.We conducted a simulator-based evaluation of driving with hemianopia to investigate detectionperformance and head movement behaviors on approach to intersections.METHODSTo date, eight people with complete homonymous hemianopia (5 left and 3 right), and withoutvisual neglect or significant cognitive decline have completed the study. All had current or recentdriving experience (within the last 6 years). They completed two simulator sessions, one weekapart, driving in a high-fidelity simulator. Each session consisted of a familiarization period of30-60 minutes followed by 6 test drives (each about 12 minutes in duration). The primarysimulator task was to detect and respond (by a horn press) to the appearance of pedestrian targetsin a variety of traffic situations while driving according to the normal rules of the road. Targetsappeared randomly in locations relevant to real-world driving. There were two types of targets:“roadway” targets, which appeared either on the left or right of the road at small (~ 4°) or large(~14°) eccentricities from the presumed line of sight, and “intersection” targets, which wereplaced near or at intersections to test whether drivers were scanning effectively whenapproaching an intersection. Primary outcome measures were the percentage of targets detectedand reaction times when detected. Head movements were recorded with an inexpensive, lightweight,head-mounted optical head tracking system. Preliminary analyses of head movementbehaviors were conducted for intersections with stop or yield signs. Based on visual inspectionof the head movement plots, the number and direction of head movements were recorded and head movement scanning was graded on a 4-point scale (from 1 inadequate to 4 excellent). Inaddition, we are developing methods to automatically quantify driving skills (e.g., steering, laneposition) from the simulator data output.RESULTSDetection rates for roadway pedestrian targets were lower and reaction times longer on the blindside than the seeing side (p ≤ 0.05). Blind side: median detection rate 47% (IQR 22 to 63%),median reaction time 1.65s (IQR 1.05 to 1.84s); seeing side: median detection rate 93% (IQR89% to 99%), median reaction time 0.93s, (IQR 0.88 to 1.25s). Detection rates on the blind sidewere lower at the larger eccentricity (median 23%) than the smaller eccentricity (median 66%; p= 0.01). Drivers with right hemianopia (RH) detected 83% of intersection pedestrian targets onthe extreme left of an intersection but none on the extreme right, whereas drivers with lefthemianopia (LH) detected 33% on the extreme left and 80% on the extreme right. Better headscanningscores were associated with better detection rates for intersection targets at extremepositions on the blind side (Spearman r = 0.79, p = 0.02). Two of the drivers with LH showedinadequate scanning (grade 1), failing to scan to the left at more than 60% of intersections. Therest of the drivers with LH and all three with RH demonstrated better head-scanning (grades 2-4)with some compensatory head movement behaviors. At T-intersections with no incoming roadon one side, they scanned more frequently in the direction of the “absent” road when it was onthe blind side (RH 40% and LH 80%) than when it was on the seeing side (RH and LH \u3c10%).When there were incoming roads on both sides, the first head scan was normally to the left forLH, but it was to the right about 30% of the time for drivers with RH.CONCLUSIONSThese results provide evidence of widely varying levels of compensation and detection abilitiesamongst drivers with hemianopia, suggesting that fitness to drive should be evaluated on anindividual basis. The preliminary finding of a relationship between head-scanning score andintersection detection performance will be further evaluated using automated methods toquantify head movement behaviors and a larger sample of drivers with hemianopia. Furthermore,we will compare head movement behaviors of drivers with hemianopia to matched controldrivers without visual field loss.REFERENCESCoeckelbergh, T.R., Brouwer, W.H., Cornelissen, F.W., van Wolffelaar, P., Kooijman, A.C.(2002). The effect of visual field defects on driving performance: a driving simulator study. ArchOphthalmol, 120, 1509-1516

    Video Test to Evaluate Detection Performance of Drivers with Hemianopia: Preliminary Results

    Get PDF
    The ability of individuals with hemianopia to compensate for their vision impairment by eye/head scanning to detect hazards in their non-seeing (blind) hemifield varies widely in both simulator and on-road tests. Conventional visual fields tests do not reflect this variability, while simulator and on-road tests are time-consuming and expensive. We therefore developed a simple, 15-minute video-based pedestrian detection test suitable for implementation on a desktop computer and monitor. The test was found to be sensitive to detection deficits in both hemianopia and quadranopia, and predictive of detection performance in a driving simulator. Our preliminary findings suggest that the test provides a simple method of measuring detection ability relevant to driving which may be useful both as a screening test and as an evaluation tool for rehabilitation devices and training

    Mobile gaze tracking system for outdoor walking behavioral studies

    Get PDF
    Most gaze tracking techniques estimate gaze points on screens, on scene images, or in confined spaces. Tracking of gaze in open-world coordinates, especially in walking situations, has rarely been addressed. We use a headmounted eye tracker combined with two inertial measurement units (IMU) to track gaze orientation relative to the heading direction in outdoor walking. Head movements relative to the body are measured by the difference in output between the IMUs on the head and body trunk. The use of the IMU pair reduces the impact of environmental interference on each sensor. The system was tested in busy urban areas and allowed drift compensation for long (up to 18 min) gaze recording. Comparison with ground truth revealed an average error of 3.38 while walking straight segments. The range of gaze scanning in walking is frequently larger than the estimation error by about one order of magnitude. Our proposed method was also tested with real cases of natural walking and it was found to be suitable for the evaluation of gaze behaviors in outdoor environments
    corecore