72 research outputs found

    Magnetic Gas Sensor and Methods Using Antiferromagnetic Hematite Nanoparticles

    Get PDF
    A nanoscale antiferromagnetic gas sensing apparatus and methods of measuring gas using the apparatus are described. The use of the magnetic properties of an antiferromagnetic material as gas sensing parameters explores the concept of magnetic gas sensing. According to a preferred embodiment, a nanoscale magnetic hydrogen sensor apparatus is developed based on varying of the saturation magnetization and remanence of nanoscale antiferromagnetic hematite with hydrogen flow. For example, the saturation magnetization and remanence of nanoscale hematite has been shown to increase one to two orders of magnitude in the presence of flowing hydrogen gas at concentrations in the 1-10% range and at 575 K, indicating that a magnetic hydrogen sensor using hematite material may be practical and useful for detecting hydrogen in various environments such as those wherein production, storage, transportation, and/or vehicle use of hydrogen is being conducted

    Transition Metal-Doped Oxide Semiconductor Exhibiting Room-Temperature Ferromagnetism

    Get PDF
    An oxide semiconductor doped with a transition metal and exhibiting room-temperature ferromagnetism is disclosed. The transition metal-doped oxide semiconductor is preferably manufactured in powder form, and the transition metal is preferably evenly distributed throughout the oxide semiconductor. The preferred embodiments are iron-doped tin dioxide and cobalt-doped tin dioxide. Gases may be detected by passing them across a material and measuring the change in magnetic properties of the material; the preferred material is iron-doped tin dioxide

    A High-Yield Synthesis of Chalcopyrite CuInS\u3csub\u3e2\u3c/sub\u3e Nanoparticles with Exceptional Size Control

    Get PDF
    We report high-yield and efficient size-controlled syntheses of Chalcopyrite CuInS2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100◦C and times as short as 30 minutes. The nanoparticles sizes were 1.8nm to 10.8 nm as reaction temperatures were varied from 100◦C to 200◦C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuInS2 nanoparticles

    Preferential Killing of Cancer Cells and Activated Human T-Cells Using ZnO Nanoparticles

    Get PDF
    Here we disclose the response of normal human cells to ZnO nanoparticles under different signaling environments and compare it to the response of cancerous cells. ZnO nanoparticles exhibit a strong preferential ability to kill cancerous T cells (-28-35X) compared to normal cells. Interestingly, the activation state of the cell contributes toward nanoparticle toxicity as resting T cells display a relative resistance while cells stimulated through the T cell receptor and CD28 costimulatory pathway show greater toxicity in direct relation to the level of activation. The novel findings of cell selective toxicity towards potential disease causing cells indicate a potential utility of ZnO nanoparticle in the treatment of cancer and/or autoimmunity

    Defect Driven Magnetism in Doped SnO\u3csub\u3e2\u3c/sub\u3e Nanoparticles: Surface Effects

    Get PDF
    Magnetism and energetics of intrinsic and extrinsic defects and defect clusters in bulk and surfaces of SnO2 is investigated using first-principles to understand the role of surfaces in inducing magnetism in Zn doped nanoparticles. We find that Sn vacancies induce the largest magnetic moment in bulk and on surfaces. However, they have very large formation energies in bulk as well as on surfaces. Oxygen vacancies on the other hand are much easier to create than VSn, but neutral and VO+2 vacancies do not induce any magnetism in bulk as well as on surfaces. VO+1 induce small magnetism in bulk and on (001) surfaces. Isolated ZnSn defects are found to be much easier to create than isolated Sn vacancies and induce magnetism in bulk as well on surfaces. Due to charge compensation, ZnSn+VO defect cluster is found to have the lowest for-mation energy amongst all the defects; it has a large magnetic moment on (001), a small magnetic moment on (110) surface and it is non-magnetic in bulk. Thus, we find that ZnSn and ZnSn+VO defects on the surfaces of SnO2 play an important role in inducing the magnetism in Zn-doped SnO2 nanoparticles

    Size, Surface Structure, and Doping Effects on Ferromagnetism in SnO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    The effects of crystallite size, surface structure, and dopants on the magnetic properties of semiconducting oxides are highly controversial. In this work, Fe:SnO2 nanoparticles were prepared by four wet-chemical methods, with Fe concentration varying from 0% to 20%. Analysis confirmed pure single-phase cassiterite with a crystallite size of 2.6 ± 0.1 nm that decreased with increasing. Fe% doped substitutionally as Fe3+. Pure SnO2 showed highly reproducible weak magnetization that varied significantly with synthesis method. Interestingly, doping SnO2 with Fe \u3c 2.5% produced enhanced magnetic moments in all syntheses; the maximum of 1.6 × 10−4 µB/Fe ion at 0.1% Fe doping was much larger than the 2.6 × 10−6 µB/Fe ion of pure Fe oxide nanoparticles synthesized under similar conditions. At Fe ≥ 2.5%, the magnetic moment was significantly reduced. This work shows that (1) pure SnO2 can produce an intrinsic ferromagnetic behavior that varies with differences in surface structure, (2) very low Fe doping results in high magnetic moments, (3) higher Fe doping reduces magnetic moment and destroys ferromagnetism, and (4) there is an interesting correlation between changes in magnetic moment, bandgap, and lattice parameters. These results support the possibility that the observed ferromagnetism in SnO2 might be influenced by modification of the electronic structure by dopant, size, and surface structure

    Heterojunction Metal-Oxide-Metal Au-Fe\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3e-Au Single Nanowire Device for Spintronics

    Get PDF
    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe3O4 interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe3O4-Au nanowire have exhibited Ohmic behavior. Anomalous positive magnetoresistance of about 0.5% is observed on a singlena nowire, which is attributed to the high spin polarization in nanowire device with pure Fe3O4 phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe3O4 and well defined electrode contact metal (Au)—magnetite interface, which helps in attaining high spin polarized current

    Magnetoresistance Characteristics in Individual Fe\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3e Single Crystal Nanowire

    Get PDF
    We report on the magnetoresistance (MR) and electron transport measurements observed on asingle crystal magnetite nanowire prepared using a hydrothermal synthesis method. High-resolution electron microscopy revealed the single crystal magnetite nanowires with 80–120 nm thickness and up to 8 μm in length. Magnetic measurements showed the typical Verwey transition around 120 K with a 100 Oe room temperature coercivity and 45 emu/g saturationmagnetization, which are comparable to bulk magnetite. Electrical resistance measurements in 5-300 K temperature range were performed by scanning gate voltage and varying appliedmagnetic field. Electrical resistivity of the nanowire was found to be around 5 × 10−4 Ω m, slightly higher than the bulk and has activation energy of 0.07 eV. A negative MR of about 0.7% is observed for as-synthesized nanowires at 0.3 T applied field. MR scaled with increasing applied magnetic field representing the field-induced alignment of magnetic domain. These results are attributed to the spin-polarized electron transport across the antiphase boundaries, which implicate promising applications for nanowires in magnetoelectronics

    Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    Get PDF
    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO – FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1.In nZnO – FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (\u3e24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO – FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO – FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO – FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments

    Fluctuant Magnetism in Metal Oxide Nanocrystals Capped with Surfactants

    Get PDF
    We demonstrate experimentally that magnetism in ZnO, TiO2, CeO2, andSnO2 nanocrystals (NCs) has a fluctuant nature that varies with capping surfactant type and concentration. By developing a forced hydrolysis approach with additional postprocessing for the synthesis and surfactant capping of these NCs, we effectively avoid the influence of size, shape, and magnetic impurities on the magnetic behavior of NCs, thus revealing the systematic influence of the capping surfactants on the NC magnetism. The x-ray photoelectron spectroscopy results and theoretical calculations clearly show that the magnetism fluctuation with surfactant concentration can be attributed to the periodic variation of spins, which arises from the concentration-dependent electron transfer from surfactants to NCs. Our results not only explain the previously reported seemingly irregular magnetism induced by capping surfactants but also provide an effective approach to tune or optimize the NC magnetism
    • …
    corecore