12 research outputs found

    Dependence of efficiency of harvest control with fixed preferences on transmission mechanism TM<i>i</i> (bottom left corner) and preferences (<i>h</i><sub><i>Pj</i></sub>, <i>h</i><sub><i>Pf</i></sub>, <i>h</i><sub><i>Pm</i>1</sub>, <i>h</i><sub><i>Pm</i>2</sub>) shown by line styles.

    No full text
    <p>Non-monotonous behavior arises due to switching in the model: involvement of younger males in mating or too low buck:doe ratio and decline in birth rate. Density dependence is according to (A12), but (A14) with θ = 1 and 2 give indistinguishable plots.</p

    Buck:doe and fawn:doe ratios corresponding to constrained optimal harvest preferences in Fig 2.

    No full text
    <p>Buck:doe and fawn:doe ratios corresponding to constrained optimal harvest preferences in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0151039#pone.0151039.g002" target="_blank">Fig 2</a>.</p

    Harvest preferences used in calculations in Fig 3.

    No full text
    <p>Harvest preferences used in calculations in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0151039#pone.0151039.g003" target="_blank">Fig 3</a>.</p

    Ratio of juvenile to adult disease prevalence (solid line) and population disease prevalence (dotted line) corresponding to constrained optimal harvest preferences in Fig 2 and fawn:doe ratios in Fig 3.

    No full text
    <p>For TM3 and TM4 disease transmission to juveniles is less and optimal harvest regimes result in a higher proportion of juveniles in the population.</p

    Buck:doe and fawn:doe ratios corresponding to the optimal harvest preferences in Fig 5.

    No full text
    <p>In spite of differences in control policy, the ratios are close to those in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0151039#pone.0151039.g003" target="_blank">Fig 3</a>, and disease eradication is achieved at the same harvest intensity as in Figs <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0151039#pone.0151039.g002" target="_blank">2</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0151039#pone.0151039.g003" target="_blank">3</a>.</p

    Hunter harvest and CWD prevalence estimates for 2006–2011.

    No full text
    <p>Hunter harvest and CWD prevalence estimates for 2006–2011.</p

    Fitting 6 to 10 parameter models to data, with culling terms <i>γ</i><sub>1</sub>,<i>γ</i><sub>2</sub> and immigration terms <i>j</i><sub>1</sub>,<i>j</i><sub>2</sub> present (+) or absent (–); see Eqs (12) and (13).

    No full text
    <p>The model in row 12 with the lowest AIC and AIC<sub>C</sub> is shown in bold; it shows no culling effect for males. AIC<sub>C</sub> also supports model in row 16 with no culling effect for either males or females. None of the best models show significance of immigration terms.</p

    The number of secondary infections per one infected individual <i>R</i><sub>0</sub> (black circles), per one infected male <i>q</i><sub><i>G</i>1</sub> (blue M) and per one infected female <i>q</i><sub><i>G</i>2</sub> (red F) for buck:doe ratio 1:3.

    No full text
    <p>Most models predict that infected females create almost twice as many secondary infections than infected females. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0140024#pone.0140024.t005" target="_blank">Table 5</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0140024#pone.0140024.e010" target="_blank">Eq 10</a> for details.</p

    Optimization of harvest preferences.

    No full text
    <p>In contrast with <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0151039#pone.0151039.g002" target="_blank">Fig 2</a>, <i>h</i><sub><i>Pf</i></sub>(<i>H</i>), <i>h</i><sub><i>Pm</i>1</sub>(<i>H</i>), <i>h</i><sub><i>Pm</i>2</sub>(<i>H</i>) are selected independently. The control regimes are much more complicated compared to partial optimization in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0151039#pone.0151039.g002" target="_blank">Fig 2</a>, but typically this gives only a small decrease of disease prevalence. Partial or constrained optimization appears more practical.</p

    Circles show CWD prevalence in Alberta from hunter-harvest data in Table 1.

    No full text
    <p>Solid lines show Eqs (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0140024#pone.0140024.e013" target="_blank">12</a>) and (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0140024#pone.0140024.e014" target="_blank">13</a>) fit to the data. Various models correspond to different hypotheses about “fecundity” matrix <i>F</i> and are explained in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0140024#pone.0140024.t004" target="_blank">Table 4</a>.</p
    corecore