379 research outputs found

    Formation of nanoscale structures by inductively coupled plasma etching

    Get PDF
    This paper will review the top down technique of ICP etching for the formation of nanometer scale structures. The increased difficulties of nanoscale etching will be described. However it will be shown and discussed that inductively coupled plasma (ICP) technology is well able to cope with the higher end of the nanoscale: features from 100nm down to about 40nm are relatively easy with current ICP technology. It is the ability of ICP to operate at low pressure yet with high plasma density and low (controllable) DC bias that helps greatly compared to simple reactive ion etching (RIE) and, though continual feature size reduction is increasingly challenging, improvements to ICP technology as well as improvements in masking are enabling sub-10nm features to be reached. Nanoscale ICP etching results will be illustrated in a range of materials and technologies. Techniques to facilitate etching (such as the use of cryogenic temperatures) and techniques to improve the mask performance will be described and illustrated

    Stroke Factors Associated with Thrombolysis Use in Hospitals in Singapore and US: A Cross-Registry Comparative Study

    Get PDF
    Background and Objectives: This paper aims to describe and compare the characteristics of 2 stroke populations in Singapore and in St. Louis, USA, and to document thrombolysis rates and contrast factors associated with its uptake in both populations. Methods: The stroke populations described were from the Singapore Stroke Registry (SSR) in -Singapore and the Cognitive Rehabilitation Research Group Stroke Registry (CRRGSR) in St. Louis, MO, USA. The registries were compared in terms of demographics and stroke risk factor history. Logistic regression was used to determine factors associated with thrombolysis uptake. Results: A total of 39,323 and 8,106 episodes were recorded in SSR and CRRGSR, respectively, from 2005 to 2012. Compared to CRRGSR, patients in SSR were older, male, and from the ethnic majority. Thrombolysis rates in SSR and CRRGSR were 2.5 and 8.2%, respectively, for the study period. History of ischemic heart disease or atrial fibrillation was associated with increased uptake in both populations, while history of stroke was associated with lower uptake. For SSR, younger age and males were associated with increased uptake, while having a history of smoking or diabetes was associated with decreased uptake. For CRRGSR, ethnic minority status was associated with decreased uptake. Conclusions: The comparison of stroke populations in Singapore and St Louis revealed distinct differences in clinicodemographics of the 2 groups. Thrombolysis uptake was driven by nonethnicity demographics in Singapore. Ethnicity was the only demographic driver of uptake in the CRRGSR population, highlighting the need to target ethnic minorities in increasing access to thrombolysis

    Effect Modification of the Association between Short-term Meteorological Factors and Mortality by Urban Heat Islands in Hong Kong

    Get PDF
    Background Prior studies from around the world have indicated that very high temperatures tend to increase summertime mortality. However possible effect modification by urban micro heat islands has only been examined by a few studies in North America and Europe. This study examined whether daily mortality in micro heat island areas of Hong Kong was more sensitive to short term changes in meteorological conditions than in other areas. Method An urban heat island index (UHII) was calculated for each of Hong Kong’s 248 geographical tertiary planning units (TPU). Daily counts of all natural deaths among Hong Kong residents were stratified according to whether the place of residence of the decedent was in a TPU with high (above the median) or low UHII. Poisson Generalized Additive Models (GAMs) were used to estimate the association between meteorological variables and mortality while adjusting for trend, seasonality, pollutants and flu epidemics. Analyses were restricted to the hot season (June-September). Results Mean temperatures (lags 0–4) above 29°C and low mean wind speeds (lags 0–4) were significantly associated with higher daily mortality and these associations were stronger in areas with high UHII. A 1°C rise above 29°C was associated with a 4.1% (95% confidence interval (CI): 0.7%, 7.6%) increase in natural mortality in areas with high UHII but only a 0.7% (95% CI: −2.4%, 3.9%) increase in low UHII areas. Lower mean wind speeds (5th percentile vs. 95th percentile) were associated with a 5.7% (95% CI: 2.7, 8.9) mortality increase in high UHII areas vs. a −0.3% (95% CI: −3.2%, 2.6%) change in low UHII areas. Conclusion The results suggest that urban micro heat islands exacerbate the negative health consequences of high temperatures and low wind speeds. Urban planning measures designed to mitigate heat island effects may lessen the health effects of unfavorable summertime meteorological conditions

    Discrete symmetries, invisible axion and lepton number symmetry in an economic 3-3-1 model

    Full text link
    We show that Peccei-Quinn and lepton number symmetries can be a natural outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z_11 x Z_2 symmetry. This symmetry is suitably accommodated in this model when we augmented its spectrum by including merely one singlet scalar field. We work out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study the phenomenological consequences. The main result of this work is that the solution to the strong CP problem can be implemented in a natural way, implying an invisible axion phenomenologically unconstrained, free of domain wall formation and constituting a good candidate for the cold dark matter.Comment: 17 pages, Revtex

    Formation of nanoscale structures by inductively coupled plasma etching

    Get PDF
    This paper will review the top down technique of ICP etching for the formation of nanometer scale structures. The increased difficulties of nanoscale etching will be described. However it will be shown and discussed that inductively coupled plasma (ICP) technology is well able to cope with the higher end of the nanoscale: features from 100nm down to about 40nm are relatively easy with current ICP technology. It is the ability of ICP to operate at low pressure yet with high plasma density and low (controllable) DC bias that helps greatly compared to simple reactive ion etching (RIE) and, though continual feature size reduction is increasingly challenging, improvements to ICP technology as well as improvements in masking are enabling sub-10nm features to be reached. Nanoscale ICP etching results will be illustrated in a range of materials and technologies. Techniques to facilitate etching (such as the use of cryogenic temperatures) and techniques to improve the mask performance will be described and illustrated

    Reuse of structural domain–domain interactions in protein networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein interactions are thought to be largely mediated by interactions between structural domains. Databases such as <it>i</it>Pfam relate interactions in protein structures to known domain families. Here, we investigate how the domain interactions from the <it>i</it>Pfam database are distributed in protein interactions taken from the HPRD, MPact, BioGRID, DIP and IntAct databases.</p> <p>Results</p> <p>We find that known structural domain interactions can only explain a subset of 4–19% of the available protein interactions, nevertheless this fraction is still significantly bigger than expected by chance. There is a correlation between the frequency of a domain interaction and the connectivity of the proteins it occurs in. Furthermore, a large proportion of protein interactions can be attributed to a small number of domain interactions. We conclude that many, but not all, domain interactions constitute reusable modules of molecular recognition. A substantial proportion of domain interactions are conserved between <it>E. coli</it>, <it>S. cerevisiae </it>and <it>H. sapiens</it>. These domains are related to essential cellular functions, suggesting that many domain interactions were already present in the last universal common ancestor.</p> <p>Conclusion</p> <p>Our results support the concept of domain interactions as reusable, conserved building blocks of protein interactions, but also highlight the limitations currently imposed by the small number of available protein structures.</p

    Pediatric Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations

    Get PDF
    This 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations (CoSTR) for pediatric life support is based on the most extensive evidence evaluation ever performed by the Pediatric Life Support Task Force. Three types of evidence evaluation were used in this review: systematic reviews, scoping reviews, and evidence updates. Per agreement with the evidence evaluation recommendations of the International Liaison Committee on Resuscitation, only systematic reviews could result in a new or revised treatment recommendation. Systematic reviews performed for this 2020 CoSTR for pediatric life support included the topics of sequencing of airway-breaths-compressions versus compressions-airway-breaths in the delivery of pediatric basic life support, the initial timing and dose intervals for epinephrine administration during resuscitation, and the targets for oxygen and carbon dioxide levels in pediatric patients after return of spontaneous circulation. The most controversial topics included the initial timing and dose intervals of epinephrine administration (new treatment recommendations were made) and the administration of fluid for infants and children with septic shock (this latter topic was evaluated by evidence update). All evidence reviews identified the paucity of pediatric data and the need for more research involving resuscitation of infants and children

    A Femtomol Range FRET Biosensor Reports Exceedingly Low Levels of Cell Surface Furin: Implications for the Processing of Anthrax Protective Antigen

    Get PDF
    Furin, a specialized endoproteinase, transforms proproteins into biologically active proteins. Furin function is important for normal cells and also in multiple pathologies including malignancy and anthrax. Furin is believed to cycle between the Golgi compartment and the cell surface. Processing of anthrax protective antigen-83 (PA83) by the cells is considered thus far as evidence for the presence of substantial levels of cell-surface furin. To monitor furin, we designed a cleavage-activated FRET biosensor in which the Enhanced Cyan and Yellow Fluorescent Proteins were linked by the peptide sequence SNSRKKR↓STSAGP derived from anthrax PA83. Both because of the sensitivity and selectivity of the anthrax sequence to furin proteolysis and the FRET-based detection, the biosensor recorded the femtomolar levels of furin in the in vitro reactions and cell-based assays. Using the biosensor that was cell-impermeable because of its size and also by other relevant methods, we determined that exceedingly low levels, if any, of cell-surface furin are present in the intact cells and in the cells with the enforced furin overexpression. This observation was in a sharp contrast with the existing concepts about the furin presentation on cell surfaces and anthrax disease mechanism. We next demonstrated using cell-based tests that PA83, in fact, was processed by furin in the extracellular milieu and that only then the resulting PA63 bound the anthrax toxin cell-surface receptors. We also determined that the biosensor, but not the conventional peptide substrates, allowed continuous monitoring of furin activity in cancer cell extracts. Our results suggest that there are no physiologically-relevant levels of cell-surface furin and, accordingly, that the mechanisms of anthrax should be re-investigated. In addition, the availability of the biosensor is a foundation for non-invasive monitoring of furin activity in cancer cells. Conceptually, the biosensor we developed may serve as a prototype for other proteinase-activated biosensors
    corecore