136 research outputs found

    UV telescope TUS on board Lomonosov satellite: Selected results of the mission

    Get PDF
    The Tracking Ultraviolet Setup (TUS) was the first orbital detector aimed to check the possibility of recording ultra-high energy cosmic rays (UHECRs) at E≳100 EeV by measuring the fluorescence signal of extensive air showers in the atmosphere. TUS was an experiment funded by the Russian Space Agency ROSCOSMOS, and it operated as a part of the scientific payload of the Lomonosov satellite since April 2016 till late 2017. During its mission, TUS registered almost 80,000 events in its main operation mode, with a few of them being sufficiently interesting to be more deeply scrutinized as they showed light profile and duration similar to UHECR events, even though much brighter. At the same time, the data acquired by TUS in different acquisition modes have been used to search for more exotic matter such us strangelets and nuclearites, and to measure occurrence, time profile and signal amplitude of different classes of transient luminous events among other scientific objectives, showing the interdisciplinary capability of a space-based observatory for UHECRs. In this paper, we report a selection of studies and results obtained with the TUS telescope which will be presented and placed in the contest of the present and future missions dedicated to the observation of UHECRs from space such as Mini-EUSO, K-EUSO and POEMMA

    Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data

    Full text link
    Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.Comment: 15 page

    First results from the AugerPrime Radio Detector

    Get PDF

    Update of the Offline Framework for AugerPrime

    Get PDF

    Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects

    Get PDF
    The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E2^{-2} shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E2^{-2} be able to explain the observations

    Event-by-event reconstruction of the shower maximum XmaxX_{\mathrm{max}} with the Surface Detector of the Pierre Auger Observatory using deep learning

    Get PDF

    Reconstruction of Events Recorded with the Water-Cherenkov and Scintillator Surface Detectors of the Pierre Auger Observatory

    Get PDF

    Status and performance of the underground muon detector of the Pierre Auger Observatory

    Get PDF

    The XY Scanner - A Versatile Method of the Absolute End-to-End Calibration of Fluorescence Detectors

    Get PDF
    corecore