17 research outputs found

    Gridding Effects on CO2 Trapping in Deep Saline Aquifers

    Get PDF
    Three-dimensional numerical models of potential underground storage and compositional simulation are a way to study the feasibility of storing carbon dioxide in the existing geological formations. However, the results of the simulations are affected by many numerical parameters, and we proved that the refinement of the model grid is one of them. In this study, the impact of grid discretization on CO2 trapping when the CO2 is injected into a deep saline aquifer was investigated. Initially, the well bottom-hole pressure profiles during the CO2 injection were simulated using four different grids. As expected, the results confirmed that the overpressure reached during injection is strongly affected by gridding, with coarse grids leading to non-representative values unless a suitable ramp-up CO2 injection strategy is adopted. Then, the same grids were used to simulate the storage behavior after CO2 injection so as to assess whether space discretization would also affect the simulation of the quantity of CO2 trapped by the different mechanisms. A comparison of the obtained results showed that there is also a significant impact of the model gridding on the simulated amount of CO2 permanently trapped in the aquifer by residual and solubility trapping, especially during the few hundred years following injection. Conversely, stratigraphic/hydrodynamic trapping, initially confining the CO2 underground due to an impermeable caprock, does not depend on gridding, whereas significant mineral trapping would typically occur over a geological timescale. The conclusions are that a fine discretization, which is acknowledged to be needed for a reliable description of the pressure evolution during injection, is also highly recommended to obtain representative results when simulating CO2 trapping in the subsurface. However, the expedients on CO2 injection allow one to perform reliable simulations even when coarse grids are adopted. Permanently trapped CO2 would not be correctly quantified with coarse grids, but a reliable assessment can be performed on a small, fine-grid model, with the results then extended to the large, coarse-grid model. The issue is particularly relevant because storage safety is strictly connected to CO2 permanent trapping over time

    Forecasting Visitors’ behaviour in Crowded Museums

    Get PDF
    In this paper, we tackle the issue of measuring and understanding the visitors’ dynamics in a crowded museum in order to create and calibrate a predictive mathematical model. The model is then used as a tool to manage, control and optimize the fruition of the museum. Our contribution comes with one successful use case, the Galleria Borghese in Rome, Italy

    Italian Offshore Platform and Depleted Reservoir Conversion in the Energy Transition Perspective

    Get PDF
    New hypotheses for reusing platforms reaching their end-of-life have been investigated in several works, discussing the potential conversions of these infrastructures from recreational tourism to fish farming. In this perspective paper, we discuss the conversion options that could be of interest in the context of the current energy transition, with reference to the off-shore Italian scenario. The study was developed in support of the development of a national strategy aimed at favoring a circular economy and the reuse of existing infrastructure for the implementation of the energy transition. Thus, the investigated options include the onboard production of renewable energy, hydrogen production from seawater through electrolyzers, CO2 capture and valorization, and platform reuse for underground fluid storage in depleted reservoirs once produced through platforms. Case histories are developed with reference to a typical, fictitious platform in the Adriatic Sea, Italy, to provide an engineering-based approach to these different conversion options. The coupling of the platform with the underground storage to set the optimal operational conditions is managed through the forecast of the reservoir performance, with advanced numerical models able to simulate the complexity of the phenomena occurring in the presence of coupled hydrodynamic, geomechanical, geochemical, thermal, and biological processes. The results of our study are very encouraging, because they reveal that no technical, environmental, or safety issues prevent the conversion of offshore platforms into valuable infrastructure, contributing to achieving the energy transition targets, as long as the selection of the conversion option to deploy is designed taking into account the system specificity and including the depleted reservoir to which it is connected when relevant. Socio-economic issues were not investigated, as they were out of the scope of the project

    Tungsten oxide films by radio-frequency magnetron sputtering for near- infrared photonics

    Get PDF
    Tungsten oxide WO3-x is a transition metal oxide and a wide bandgap semiconductor, with a wide range of possible optical and photonic applications. In dependence on the fabrication techniques different stoichiometric ratios (x) and crystalline phases are obtained, which end up with an overall polymorph and extremely versatile material, characterized by tailorable dielectric properties. In particular, WO3-x thin film deposition by Radio- Frequency (RF) sputtering techniques provides a precise control of thickness, composition and nanostructure. In this work we introduce and discuss a specific process of deposition, that is magnetron RF-sputtering as a suitable way to grow WO3-x thin films with selected properties. Possibility of integrating WO3-x thin film on to one-dimensional (1D) photonic crystal structures is also explored. Films are transparent in the near and shortwavelength infrared optical spectral range. Their quality is assessed by morphological, structural and compositional characterizations. Dielectric properties are characterized by optical spectroscopy and ellipsometry, the latter also evaluates the degree of optical anisotropy of thin films in their crystalline phase. An 1D photonics bandgap structure is designed, formed by a SiO2–TiO2 multilayer and capped with a 450 nm-thick transparent WO3-x film, so that surface confinement and local enhancement of the optical field at 1416 nm in the topmost WO3-x layer is obtained
    corecore