274 research outputs found

    Recent advances in diagnosis and treatment of chronic myeloproliferative neoplasms

    Get PDF
    The Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPNs) have recently been the focus of tremendous advances in basic knowledge of disease pathophysiology following the recognition of mutations in JAK2 and MPL. These discoveries also led to refinement of the criteria employed for diagnosis. The prognostic roles of the JAK2 V617F mutation and of leukocytosis as independent risk factors for thrombosis, which represents the leading cause of death in patients with polycythemia vera and essential thrombocythemia, are supported by retrospective studies. A new risk stratification approach to the patient with primary myelofibrosis allows clinicians to distinguish categories of patients with significantly different expected survival. Finally, new drugs are currently being tested for MPNs, and molecular discoveries could ultimately lead to the development of a specific targeted therapy. Overall, significant advances in diagnosis, prognostication, and treatment have taken place in the last couple of years in the field of MPNs

    GROWTH INHIBITION AND DIFFERENTIATION OF HUMAN BREAST CANCER CELLS BY THE PAFR ANTAGONIST WEB-2086

    Get PDF
    WEB-2086 – an antagonist of platelet-activating factor receptor (PAFR) with known anti-inflammatory, antiangiogenic and antileukaemic properties – also proved to inhibit the proliferation in human solid tumour cell lines of different histology, and with much higher efficacy than in normal fibroblasts. A detailed analysis of WEB-2086 anticancer activity was then performed focusing on breast adenocarcinoma MCF-7 and MDA-MB-231 cells. WEB-2086-treated cells, either expressing (MCF-7) or unexpressing (MDA-MB-231) the oestrogen receptor (ER)α, underwent a dose-dependent growth arrest (IC(50)=0.65±0.09 and 0.41±0.07 mM, respectively) and accumulation in G(0)–G(1) phase. WEB-2086 also induced morphological and functional changes typical of mature mammary phenotype including (i) cell enlargement and massive neutral lipid deposition (best accomplished in MCF-7 cells); (ii) decrease in motility and active cathepsin D levels (mainly observed in highly invasive MDA-MB-231 cells). The expression of ERα was neither increased nor reactivated in treated MCF-7 or MDA-MB-231 cells, respectively. WEB-2086-induced differentiation in breast cancer cells involved the upregulation of PTEN, a key tumour suppressor protein opposing tumorigenesis, and was apparently independent of p53, PAFR, peripheral benzodiazepine receptor and ERα status. Overall, WEB-2086 can be proposed as an effective antiproliferative and differentiative agent with interesting translational opportunities to treat breast cancers in support to conventional chemotherapy

    The JAK2V617 mutation induces constitutive activation and agonist hypersensitivity in basophils of polycythemia vera.

    Get PDF
    BACKGROUND: The JAK2V617F mutation has been associated with constitutive and enhanced activation of neutrophils, while no information is available concerning other leukocyte subtypes. DESIGN AND METHODS: We evaluated correlations between JAK2V617F mutation and the count of circulating basophils, the number of activated CD63(+) basophils, their response in vitro to agonists as well as the effects of a JAK2 inhibitor. RESULTS: We found that basophil count was increased in patients with JAK2V617F -positive myeloproliferative neoplasms, particularly in those with polycythemia vera, and was correlated with the V617F burden. The burden of V617F allele was similar in neutrophils and basophils from patients with polycythemia vera, while total JAK2 mRNA content was remarkably greater in the basophils; however, the content of JAK2 protein in basophils was not increased. The number of CD63(+) basophils was higher in patients with polycythemia vera than in healthy subjects or patients with essential thrombocythemia or primary myelofibrosis and was correlated with the V617F burden. Ultrastructurally, basophils from patients with polycythemia vera contained an increased number of granules, most of which were empty suggesting cell degranulation in vivo. Ex vivo experiments revealed that basophils from patients with polycythemia vera were hypersensitive to the priming effect of interleukin-3 and to f-MLP-induced activation; pre-treatment with a JAK2 inhibitor reduced polycythemia vera basophil activation. Finally, we found that the number of circulating CD63(+) basophils was significantly greater in patients suffering from aquagenic pruritus, who also showed a higher V617F allele burden. CONCLUSIONS: These data indicate that the number of constitutively activated and hypersensitive circulating basophils is increased in polycythemia vera, underscoring a role of JAK2V617F in these cells’ abnormal function and, putatively, in the pathogenesis of pruritus

    CircRNAs are here to stay: A perspective on the MLL recombinome

    Get PDF
    Chromosomal translocations harbored by cancer genomes are important oncogenic drivers. In MLL rearranged acute leukemia (MLLre) MLL/KMT2A fuses with over 90 partner genes. Mechanistic studies provided clues of MLL fusion protein leukemogenic potential, but models failed to fully recapitulate the disease. Recently, expression of oncogenic fusion circular RNAs (f-circ) by MLL-AF9 fusion was proven. This discovery, together with emerging data on the importance and diversity of circRNAs formed the incentive to study the circRNAs of the MLL recombinome. Through interactions with other RNAs, such as microRNAs, and with proteins, circRNAs regulate cellular processes also related to cancer development. CircRNAs can translate into functional peptides too. MLL and most of the 90 MLL translocation partners do express circRNAs and exploration of our RNA-seq dataset of sorted blood cell populations provided new data on alternative circular isoform generation and expression variability of circRNAs of the MLL recombinome. Further, we provided evidence that rearrangements of MLL and three of the main translocation partner genes can impact circRNA expression, supported also by preliminary observations in leukemic cells. The emerging picture underpins the view that circRNAs are worthwhile to be considered when studying MLLre leukemias and provides a new perspective on the impact of chromosomal translocations in cancer cells at large

    T-Cell Lymphoblastic Lymphoma Arising in the Setting of Myeloid/Lymphoid Neoplasms with Eosinophilia: LMO2 Immunohistochemistry as a Potentially Useful Diagnostic Marker

    Get PDF
    Simple Summary Rarely, T-lymphoblastic lymphoma (T-LBL) may develop in the setting of myeloid/lymphoid neoplasms with eosinophilia. Given important therapeutic implications, it is crucial to identify T-LBL arising in this particular context. LIM domain only 2 (LMO2) is known to be overexpressed in almost all sporadic T-LBL and not in immature TdT-positive T-cells in the thymus and in indolent T-lymphoblastic proliferations. We retrospectively evaluated the clinical, morphological, immunohistochemical and molecular features of 11 cases of T-LBL occurring in the setting of myeloid/lymphoid neoplasms with eosinophilia and investigated the immunohistochemical expression of LMO2 in this setting of T-LBL. Interestingly, 9/11 cases were LMO2 negative, with only 2 cases showing partial expression. In our study, we would suggest that LMO2 immunostaining, as part of the diagnostic panel for T-LBL, may represent a useful marker to identify T-LBL developing in the context of myeloid/lymphoid neoplasms with eosinophilia. Background: Rarely, T-lymphoblastic lymphoma (T-LBL) may develop in the setting of myeloid/lymphoid neoplasms with eosinophilia (M/LNs-Eo), a group of diseases with gene fusion resulting in overexpression of an aberrant tyrosine kinase or cytokine receptor. The correct identification of this category has relevant therapeutic implications. LIM domain only 2 (LMO2) is overexpressed in most T-LBL, but not in immature TdT-positive T-cells in the thymus and in indolent T-lymphoblastic proliferations (iT-LBP). Methods and Results: We retrospectively evaluated 11 cases of T-LBL occurring in the context of M/LNs-Eo. Clinical, histological, immunohistochemical and molecular features were collected and LMO2 immunohistochemical staining was performed. The critical re-evaluation of these cases confirmed the diagnosis of T-LBL with morphological, immunohistochemical and molecular features consistent with T-LBL occurring in M/LNs-Eo. Interestingly, LMO2 immunohistochemical analysis was negative in 9/11 cases, whereas only 2 cases revealed a partial LMO2 expression with a moderate and low degree of intensity, respectively. Conclusions: LMO2 may represent a potentially useful marker to identify T-LBL developing in the context of M/LNs-Eo. In this setting, T-LBL shows LMO2 immunohistochemical profile overlapping with cortical thymocytes and iT-LBP, possibly reflecting different molecular patterns involved in the pathogenesis of T-LBL arising in the setting of M/LNs-Eo

    Calreticulin affects hematopoietic stem/progenitor cell fate by impacting erythroid and megakaryocytic differentiation

    Get PDF
    Calreticulin (CALR) is a chaperone protein that localizes primarily to the endoplasmic reticulum (ER) lumen where it is responsible for the control of proper folding of neo-synthesized glycoproteins and for the retention of calcium. Recently, mutations affecting exon 9 of the CALR gene have been described in approximately 40% of patients with myeloproliferative neoplasms (MPNs). Although the role of mutated CALR in the development of MPNs has begun to be clarified, there are still no data available on the function of wild-type (WT) CALR during physiological hematopoiesis. In order to shed light on the role of WT CALR during normal hematopoiesis, we performed gene silencing and overexpression experiments in Hematopoietic Stem Progenitor Cells (HSPCs). Our results showed that CALR overexpression is able to affect physiological hematopoiesis by enhancing both erythroid and megakaryocytic (MK) differentiation. In agreement with overexpression data, CALR silencing caused a significant decrease in both erythroid and MK differentiation of human HSPCs. Gene expression profiling (GEP) analysis showed that CALR is able to affect the expression of several genes involved in HSPCs differentiation towards both the erythroid and MK lineages. Moreover, GEP data also highlighted the modulation of several genes involved in ER stress response, unfolded protein response (UPR), DNA repair and of several genes already described to play a role in MPN development, such as pro-inflammatory cytokines and hematological neoplasms-related markers. Altogether, our data unraveled a new and unexpected role for CALR in the regulation of normal hematopoietic differentiation. Moreover, by showing the impact of CALR on the expression of genes involved in several biological processes already described in cellular transformation, our data strongly suggest a more complex role for CALR in MPN development that goes beyond the activation of the THPO receptor and involves ER stress response, UPR and DNA repair
    • …
    corecore