22 research outputs found

    Efficacy of whole-body vibration training on brain-derived neurotrophic factor, clinical and functional outcomes, and quality of life in women with fibromyalgia syndrome: a randomized controlled trial

    No full text
    Whole-body vibration (WBV) is an exercise modality or treatment/prophylaxis method in which subjects (humans, animals, or cells) are exposed to mechanical vibrations through a vibrating platform or device. The vibrations are defined by their direction, frequency, magnitude, duration, and Biology 2021, 10, 965. https://doi.org/10.3390/biology10100965 https://www.mdpi.com/journal/biology Biology 2021, 10, 965 2 of 30 the number of daily bouts. Subjects can be exposed while performing exercises, hold postures, sitting, or lying down. Worldwide, WBV has attracted significant attention, and the number of studies is rising. To interpret, compare, and aggregate studies, the correct, complete, and consistent reporting of WBV-specific data (WBV parameters) is critical. Specific reporting guidelines aid in accomplishing this goal. There was a need to expand existing guidelines because of continuous developments in the field of WBV research, including but not limited to new outcome measures regarding brain function and cognition, modified designs WBV platforms and attachments (e.g., mounting a chair on a platform), and comparisons of animal and cell culture studies with human studies. Based on Delphi studies among experts and using EQUATOR recommendations, we have developed extended reporting guidelines with checklists for human and animal/cell culture research, including information on devices, vibrations, administration, general protocol, and subjects. In addition, we provide explanations and examples of how to report. These new reporting guidelines are specific to WBV variables and do not target research designs in general. Researchers are encouraged to use the new WBV guidelines in addition to general design-specific guideline

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceMeasurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb1^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant tt \textrm{t}\overline{\textrm{t}} background. A cross section of 79.2±0.9(stat)8.0+7.7(syst)±1.2(lumi) 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.[graphic not available: see fulltext

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceThe measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb1^{−1}. The inclusive fiducial cross section is measured to be σfid=73.45.3+5.4(stat)2.2+2.4(syst) {\sigma}_{\textrm{fid}}={73.4}_{-5.3}^{+5.4}{\left(\textrm{stat}\right)}_{-2.2}^{+2.4}\left(\textrm{syst}\right) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.[graphic not available: see fulltext

    Measurement of the top quark pole mass using tt \textrm{t}\overline{\textrm{t}} +jet events in the dilepton final state in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    A measurement of the top quark pole mass mtpole{{m_{\mathrm{t}}} ^{\text{pole}}} in events where a top quark-antiquark pair (ttˉ\mathrm{t\bar{t}}) is produced in association with at least one additional jet (ttˉ\mathrm{t\bar{t}}+jet) is presented. This analysis is performed using proton-proton collision data at s=\sqrt{s} = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb1^{-1}. Events with two opposite-sign leptons in the final state (e+^{+}e^{-}, μ+μ\mu^{+}\mu^{-}, e±μ^{\pm}\mu^{\mp}) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the ttˉ\mathrm{t\bar{t}}+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in mtpole={{m_{\mathrm{t}}} ^{\text{pole}}} = 172.94 ±\pm 1.37 GeV.A measurement of the top quark pole mass mtpole {m}_{\textrm{t}}^{\textrm{pole}} in events where a top quark-antiquark pair (tt \textrm{t}\overline{\textrm{t}} ) is produced in association with at least one additional jet (tt \textrm{t}\overline{\textrm{t}} +jet) is presented. This analysis is performed using proton-proton collision data at s \sqrt{s} = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb1^{−1}. Events with two opposite-sign leptons in the final state (e+^{+}e^{−}, μ+^{+}μ^{−}, e±^{±}μ^{∓}) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the tt \textrm{t}\overline{\textrm{t}} +jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in mtpole {m}_{\textrm{t}}^{\textrm{pole}} = 172.93 ± 1.36 GeV.[graphic not available: see fulltext]A measurement of the top quark pole mass mtpolem_\mathrm{t}^\text{pole} in events where a top quark-antiquark pair (ttˉ\mathrm{t\bar{t}}) is produced in association with at least one additional jet (ttˉ\mathrm{t\bar{t}}+jet) is presented. This analysis is performed using proton-proton collision data at s\sqrt{s} = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb1^{-1}. Events with two opposite-sign leptons in the final state (e+^+e^-, μ+μ\mu^+\mu^-, e±μ^\pm\mu^\mp) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the ttˉ\mathrm{t\bar{t}}+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in mtpolem_\mathrm{t}^\text{pole} = 172.93 ±\pm 1.36 GeV

    Search for resonant and nonresonant production of pairs of dijet resonances in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceA search for pairs of dijet resonances with the same mass is conducted in final states with at least four jets. Results are presented separately for the case where the four jet production proceeds via an intermediate resonant state and for nonresonant production. The search uses a data sample corresponding to an integrated luminosity of 138 fb1^{−1} collected by the CMS detector in proton-proton collisions at s \sqrt{s} = 13 TeV. Model-independent limits, at 95% confidence level, are reported on the production cross section of four-jet and dijet resonances. These first LHC limits on resonant pair production of dijet resonances via high mass intermediate states are applied to a signal model of diquarks that decay into pairs of vector-like quarks, excluding diquark masses below 7.6 TeV for a particular model scenario. There are two events in the tails of the distributions, each with a four-jet mass of 8 TeV and an average dijet mass of 2 TeV, resulting in local and global significances of 3.9 and 1.6 standard deviations, respectively, if interpreted as a signal. The nonresonant search excludes pair production of top squarks with masses between 0.50 TeV to 0.77 TeV, with the exception of a small interval between 0.52 and 0.58 TeV, for supersymmetric R-parity-violating decays to quark pairs, significantly extending previous limits. Here, the most significant excess above the predicted background occurs at an average dijet mass of 0.95 TeV, for which the local and global significances are 3.6 and 2.5 standard deviations, respectively.[graphic not available: see fulltext

    Search for nonresonant Higgs boson pair production in the four leptons plus two b jets final state in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of s=\sqrt{s} = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb1^{-1}. A 95% confidence level upper limit of 32.4 is set on the signal strength modifier μ\mu, defined as the ratio of the observed HH production rate in the HHZZbbˉ4bbˉ{\mathrm{H}\mathrm{H}} \to\mathrm{Z}\mathrm{Z}^{*}\mathrm{b}\mathrm{\bar{b}}\to 4\ell\mathrm{b}\mathrm{\bar{b}} decay channel to the standard model expectation. Possible modifications of the H trilinear coupling λHHH\lambda_\text{HHH} with respect to the standard model (SM) value are investigated. The coupling modifier κλ\kappa_{\lambda}, defined as λHHH\lambda_\text{HHH} divided by its SM prediction, is constrained to be within the observed (expected) range -8.8 (-9.8) <κλ< < \kappa_{\lambda} < 13.4 (15.0) at 95% confidence level.The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of s \sqrt{s} = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb1^{−1}. A 95% confidence level upper limit of 32.4 is set on the signal strength modifier μ, defined as the ratio of the observed HH production rate in the HHZZbb4bb \textrm{HH}\to {\textrm{ZZ}}^{\ast}\textrm{b}\overline{\textrm{b}}\to 4\ell \textrm{b}\overline{\textrm{b}} decay channel to the standard model (SM) expectation. Possible modifications of the H trilinear coupling λHHH_{HHH} with respect to the SM value are investigated. The coupling modifier κλ_{λ}, defined as λHHH_{HHH} divided by its SM prediction, is constrained to be within the observed (expected) range −8.8 (−9.8) < κλ_{λ}< 13.4 (15.0) at 95% confidence level.[graphic not available: see fulltext]The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of s\sqrt{s} = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb1^{-1}. A 95% confidence level upper limit of 32.4 is set on the signal strength modifier μ\mu, defined as the ratio of the observed HH production rate in the HH \to ZZ*bbˉ\mathrm{\bar{b}} \to 4\ellbbˉ\mathrm{\bar{b}} decay channel to the standard model expectation. Possible modifications of the H trilinear coupling λHHH\lambda_\text{HHH} with respect to the standard model (SM) value are investigated. The coupling modifier κλ\kappa_{\lambda}, defined as λHHH\lambda_\text{HHH} divided by its SM prediction, is constrained to be within the observed (expected) range -8.8 (-9.8) << κλ\kappa_{\lambda} << 13.4 (15.0) at 95% confidence level

    Searches for additional Higgs bosons and for vector leptoquarks in ττ\tau\tau final states in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    Three searches are presented for signatures of physics beyond the standard model (SM) in ττ\tau\tau final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at s=\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into τ\tau leptons and the cross sections for the production of a new boson ϕ\phi, in addition to the H(125) boson, via gluon fusion (ggϕ\phi) or in association with b quarks, ranging from O{\mathcal{O}}(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for ggϕ\phi production with local pp-values equivalent to about three standard deviations at mϕ={m_{\phi}} = 0.1 and 1.2 TeV. In a search for tt-channel exchange of a vector leptoquark U1_{1}, 95% CL upper limits are set on the dimensionless U1_{1} leptoquark coupling to quarks and τ\tau leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the Mh125{M_{\mathrm{h}}^{125}} and Mh,EFT125{M_{\mathrm{h},\,\text{EFT}}^{125}} minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.Three searches are presented for signatures of physics beyond the standard model (SM) in ττ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{−1}. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into τ leptons and the cross sections for the production of a new boson ϕ, in addition to the H(125) boson, via gluon fusion (ggϕ) or in association with b quarks, ranging from O \mathcal{O} (10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for ggϕ production with local p-values equivalent to about three standard deviations at mϕ_{ϕ} = 0.1 and 1.2 TeV. In a search for t-channel exchange of a vector leptoquark U1_{1}, 95% CL upper limits are set on the dimensionless U1_{1} leptoquark coupling to quarks and τ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the Mh125 {M}_{\textrm{h}}^{125} and Mh,EFT125 {M}_{\textrm{h},\textrm{EFT}}^{125} minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.[graphic not available: see fulltext]Three searches are presented for signatures of physics beyond the standard model (SM) in ττ\tau\tau final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at s\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into τ\tau leptons and the cross sections for the production of a new boson ϕ\phi, in addition to the H(125) boson, via gluon fusion (ggϕ\phi) or in association with b quarks, ranging from O\mathcal{O}(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for ggϕ\phi production with local pp-values equivalent to about three standard deviations at mϕm_\phi = 0.1 and 1.2 TeV. In a search for tt-channel exchange of a vector leptoquark U1_1, 95% CL upper limits are set on the dimensionless U1_1 leptoquark coupling to quarks and τ\tau leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the Mh125M_\mathrm{h}^{125} and Mh,EFT125M_\mathrm{h, EFT}^{125} minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL

    Search for Higgs boson decays to a Z boson and a photon in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceResults are presented from a search for the Higgs boson decay H → Zγ, where Z → ℓ+^{+}^{−} with ℓ = e or μ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb1^{−1}. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strength μ, defined as the product of the cross section and the branching fraction \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right] relative to the standard model prediction, is extracted from a simultaneous fit to the ℓ+^{+}^{−}γ invariant mass distributions in all categories and is measured to be μ = 2.4 ± 0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right]=0.21\pm 0.08 pb. The observed (expected) upper limit at 95% confidence level on μ is 4.1 (1.8), where the expected limit is calculated under the background-only hypothesis. The ratio of branching fractions \mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)/\mathcal{B}\left(\textrm{H}\to \upgamma \upgamma \right) is measured to be 1.50.6+0.7 {1.5}_{-0.6}^{+0.7} , which agrees with the standard model prediction of 0.69 ± 0.04 at the 1.5 standard deviation level.[graphic not available: see fulltext
    corecore