123 research outputs found

    Ghost imaging with the human eye

    Get PDF
    Computational ghost imaging relies on the decomposition of an image into patterns that are summed together with weights that measure the overlap of each pattern with the scene being imaged. These tasks rely on a computer. Here we demonstrate that the computational integration can be performed directly with the human eye. We use this human ghost imaging technique to evaluate the temporal response of the eye and establish the image persistence time to be around 20 ms followed by a further 20 ms exponential decay. These persistence times are in agreement with previous studies but can now potentially be extended to include a more precise characterisation of visual stimuli and provide a new experimental tool for the study of visual perception

    A wavelength-tunable fiber-coupled source of narrowband entangled photons

    Full text link
    We demonstrate a wavelength-tunable, fiber-coupled source of polarization-entangled photons with extremely high spectral brightness and quality of entanglement. Using a 25 mm PPKTP crystal inside a polarization Sagnac interferometer we detect a spectral brightness of 273000 pairs/(s mW nm), a factor of 28 better than comparable previous sources while state tomography showed the two-photon state to have a tangle of T=0.987. This improvement was achieved by use of a long crystal, careful selection of focusing parameters and single-mode fiber coupling. We demonstrate that, due to the particular geometry of the setup, the signal and idler wavelengths can be tuned over a wide range without loss of entanglement.Comment: 10 pages, 5 figures. Article rewritten, added Fig.(1a-1b). Published in Optics Express, comments welcom

    Independent high-purity photons created in domain-engineered crystals

    Full text link
    Advanced photonic quantum technology relies on multi-photon interference which requires bright sources of high-purity single photons. Here, we implement a novel domain-engineering technique for tailoring the nonlinearity of a parametric down-conversion crystal. We create pairs of independently-heralded telecom-wavelength photons and achieve high heralding, brightness and spectral purities without filtering.Comment: 8 pages, 5 figures Imprecise comparison with the experimental results in [28] has been remove

    Pure down-conversion photons through sub-coherence length domain engineering

    Full text link
    Photonic quantum technology relies on efficient sources of coherent single photons, the ideal carriers of quantum information. Heralded single photons from parametric down-conversion can approximate on-demand single photons to a desired degree, with high spectral purities achieved through group-velocity matching and tailored crystal nonlinearities. Here we propose crystal nonlinearity engineering techniques with sub-coherence-length domains. We first introduce a combination of two existing methods: a deterministic approach with coherence-length domains and probabilistic domain-width annealing. We then show how the same deterministic domain-flip approach can be implemented with sub-coherence length domains. Both of these complementary techniques create highly pure photons, outperforming previous methods, in particular for short nonlinear crystals matched to femtosecond lasers.Comment: 12 pages, 4 figures. Minor update to Fig.

    Model-based Design of a Solar Driven Hybrid System for Space Heating and DHW Preparation of a Multifamily House☆

    Get PDF
    Abstract Following the most recent European Directives on Energy Performance of Buildings and Energy Efficiency, new solutions for DHW production, space heating and cooling have to be developed and applied to reduce the primary energy consumption of residential buildings. Due to the complexity of installation and control, H&C hybrid systems exploiting a mix of conventional fuels and RES are not yet widespread although they can bring important savings to the yearly building energy consumptions. This work summarizes the parametric analysis used as part of the design process of a hybrid system for the retrofit of a multifamily house located in Madrid, and shows how heating, cooling and DHW demands of multifamily houses can be covered by a heat pump plus solar systems, integrating a high share of RES. The design of the system has taken into account energy savings, economics and architectural aspects

    Entanglement dynamics and quasi-periodicity in discrete quantum walks

    Full text link
    We study the entanglement dynamics of discrete time quantum walks acting on bounded finite sized graphs. We demonstrate that, depending on system parameters, the dynamics may be monotonic, oscillatory but highly regular, or quasi-periodic. While the dynamics of the system are not chaotic since the system comprises linear evolution, the dynamics often exhibit some features similar to chaos such as high sensitivity to the system's parameters, irregularity and infinite periodicity. Our observations are of interest for entanglement generation, which is one primary use for the quantum walk formalism. Furthermore, we show that the systems we model can easily be mapped to optical beamsplitter networks, rendering experimental observation of quasi-periodic dynamics within reach.Comment: 9 pages, 8 figure

    Hardy's paradox and violation of a state-independent Bell inequality in time

    Get PDF
    Tests such as Bell's inequality and Hardy's paradox show that joint probabilities and correlations between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we experimentally demonstrate these concepts in the time domain, using a photonic entangling gate to perform nondestructive measurements on a single photon at different times. We show that Hardy's paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent of the quantum state, including for fully mixed states.Comment: Published Version, 4 pages, 3 figures. New, more boring titl

    Characterizing quantum dynamics with initial system-environment correlations

    Get PDF
    We fully characterize the reduced dynamics of an open quantum system initially correlated with its environment. Using a photonic qubit coupled to a simulated environment we tomographically reconstruct a superchannel---a generalised channel that treats preparation procedures as inputs---from measurement of the system alone, despite its coupling to the environment. We introduce novel quantitative measures for determining the strength of initial correlations, and to allow an experiment to be optimised in regards to its environment.Comment: 10 pages, 15 figure

    Entanglement-free certification of entangling gates

    Get PDF
    Not all quantum protocols require entanglement to outperform their classical alternatives. The nonclassical correlations that lead to this quantum advantage are conjectured to be captured by quantum discord. Here we demonstrate that discord can be explicitly used as a resource: certifying untrusted entangling gates without generating entanglement at any stage. We implement our protocol in the single-photon regime, and show its success in the presence of high levels of noise and imperfect gate operations. Our technique offers a practical method for benchmarking entangling gates in physical architectures in which only highly-mixed states are available.Comment: 5 pages, 2 figure
    • …
    corecore