6 research outputs found

    Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase‑B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction

    No full text
    We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer’s disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-β-peptide (Aβ)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1–90.0 nM) and MAO-B (IC50 in the range of 6.7–32.6 nM). Computational studies were conducted to elucidate the structure–activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aβ-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs

    Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase‑B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction

    No full text
    We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer’s disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-β-peptide (Aβ)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1–90.0 nM) and MAO-B (IC50 in the range of 6.7–32.6 nM). Computational studies were conducted to elucidate the structure–activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aβ-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs

    Dual Inhibitors of Brain Carbonic Anhydrases and Monoamine Oxidase‑B Efficiently Protect against Amyloid-β-Induced Neuronal Toxicity, Oxidative Stress, and Mitochondrial Dysfunction

    No full text
    We report here the first dual inhibitors of brain carbonic anhydrases (CAs) and monoamine oxidase-B (MAO-B) for the management of Alzheimer’s disease. Classical CA inhibitors (CAIs) such as methazolamide prevent amyloid-β-peptide (Aβ)-induced overproduction of reactive oxygen species (ROS) and mitochondrial dysfunction. MAO-B is also implicated in ROS production, cholinergic system disruption, and amyloid plaque formation. In this work, we combined a reversible MAO-B inhibitor of the coumarin and chromone type with benzenesulfonamide fragments as highly effective CAIs. A hit-to-lead optimization led to a significant set of derivatives showing potent low nanomolar inhibition of the target brain CAs (KIs in the range of 0.1–90.0 nM) and MAO-B (IC50 in the range of 6.7–32.6 nM). Computational studies were conducted to elucidate the structure–activity relationship and predict ADMET properties. The most effective multitarget compounds totally prevented Aβ-related toxicity, reverted ROS formation, and restored the mitochondrial functionality in an SH-SY5Y cell model surpassing the efficacy of single-target drugs

    Effect of hydrophobic extension of aryl enaminones and pyrazole-linked compounds combined with sulphonamide, sulfaguanidine, or carboxylic acid functionalities on carbonic anhydrase inhibitory potency and selectivity

    No full text
    Design and synthesis of three novel series of aryl enaminones (3a–f and 5a–c) and pyrazole (4a-c) linked compounds with sulphonamides, sulfaguanidine, or carboxylic acid functionalities were reported as carbonic anhydrase inhibitors (CAIs) using the “tail approach” strategy in their design to achieve the most variable amino acids in the middle/outer rims of the hCAs active site. The synthesised compounds were assessed in vitro for their inhibitory activity against the following human (h) isoforms, hCA I, II, IX, and XII using stopped-flow CO2 hydrase assay. Enaminone sulphonamide derivatives (3a–c) potently inhibited the target tumour-associated isoforms hCA IX and hCA XII (KIs 26.2–63.7 nM) and hence compounds 3a and 3c were further screened for their in vitro cytotoxic activity against MCF-7 and MDA-MB-231 cancer cell lines under normoxic and hypoxic conditions. Derivative 3c showed comparable potency against both MCF-7 and MDA-MB-231 cancer cell lines under both normoxic ((IC50 = 4.918 and 12.27 µM, respectively) and hypoxic (IC50 = 1.689 and 5.898 µM, respectively) conditions compared to the reference drug doxorubicin under normoxic (IC50 = 3.386 and 4.269 µM, respectively) and hypoxic conditions (IC50 = 1.368 and 2.62 µM, respectively). Cell cycle analysis and Annexin V-FITC and propidium iodide double staining methods were performed to reinforce the assumption that 3c may act as a cytotoxic agent through the induction of apoptosis in MCF-7 cancer cells. </p

    Design and synthesis of benzothiazole-based SLC-0111 analogues as new inhibitors for the cancer-associated carbonic anhydrase isoforms IX and XII

    No full text
    In this work, different series of benzothiazole-based sulphonamides 8a-c, 10, 12, 16a-b and carboxylic acids 14a-c were developed as novel SLC-0111 analogues with the goal of generating potent carbonic anhydrase (CA) inhibitors. The adopted strategy involved replacing the 4-fluorophenyl tail in SLC-0111 with a benzothiazole motif that attached to the ureido linker to produce compounds 8c and its regioisomers 8a-b. In addition, the ureido spacer was elongated by methylene or ethylene groups to afford the counterparts 10 and 12. In turn, the primary sulfamoyl zinc binding group (ZBG) was either substituted or replaced by carboxylic acid functionality in order to provide the secondary sulphonamide-based SLC-0111 analogues 16a-b, and the carboxylic acid derivatives 14a-c, respectively. All compounds (8a-c, 10, 12, 14a-c and 16a-b) were tested for their ability to inhibit CA isoforms CA I, II, IX and XII. Additionally, the in vitro anticancer properties of the developed CAIs were evaluated.</p

    Identification of new 4-(6-oxopyridazin-1-yl)benzenesulfonamides as multi-target anti-inflammatory agents targeting carbonic anhydrase, COX-2 and 5-LOX enzymes: synthesis, biological evaluations and modelling insights

    No full text
    Multiple inhibitions of CA, COX-2 and 5-LOX enzymes has been recognised as a useful strategy for the development of anti-inflammatory drugs that can avoid the disadvantages of using NSAIDs alone. Here, we report new pyridazine-based sulphonamides (5a-c and 7a-f) as potential multi-target anti-inflammatory candidates. First, the furanone heterocycle in the dual CA/COX-2 inhibitor Polmacoxib was replaced with the pyridazinone one. Then, a hydrophobic tail was appended through benzylation of the 3-hydroxyl group of the pyridazinone scaffold to afford benzyloxy pyridazines 5a-c. Furthermore, the structures were adorned with the polar sulphonate functionality, in pyridazine sulphonates 7a-f, that are expected to be engaged in interactions with the hydrophilic half of the CA binding sites. All of the disclosed pyridazinones were tested for inhibitory activities against 4 hCA isoforms (I, II, IX, and XII), as well as against COX-1/2, and 5-LOX. Furthermore, in vivo anti-inflammatory and analgesic effects of pyridazinones 7a and 7b were examined.</p
    corecore