7 research outputs found

    Clinical characteristics and outcome of ceftazidime/avibactam-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae infections. A retrospective, observational, 2-center clinical study

    Get PDF
    Background Recently, Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) with resistance to ceftazidime/avibactam (CZA-R) has been described, including KPC variants that restore carbapenem susceptibility. The aim of the study was to analyze the clinical characteristics and outcomes of infections caused by CZA-R KPC-Kp. Methods From 2019 to 2021, a retrospective 2-center study including patients with infections due to CZA-R KPC-Kp hospitalized at 2 academic hospitals in Rome was conducted. Demographic and clinical characteristics were collected. Principal outcome was 30-day all-cause mortality. Statistical analyses were performed with Stata-IC17 software. Results Overall, 59 patients were included (mean age, 64.4 & PLUSMN; 14.6 years; mean Charlson comorbidity index score, 4.5 & PLUSMN; 2.7). Thirty-four patients (57.6%) had infections caused by CZA-R and meropenem (MEM)-susceptible strains. A previous CZA therapy was observed in 40 patients (67.8%), mostly in patients with MEM-susceptible KPC variant (79.4% vs 52%, P = .026). Primary bacteremia was observed in 28.8%, followed by urinary tract infections and pneumonia. At infection onset, septic shock was present in 15 subjects (25.4%). After adjustment for confounders, only the presence of septic shock was independently associated with mortality (P = .006). Conclusions Infections due to CZA-R KPC-Kp often occur in patients who had previously received CZA, especially in the presence of strains susceptible to MEM. Nevertheless, one-third of patients had never received CZA before KPC-Kp CZA-R. Since the major driver for mortality was infection severity, understanding the optimal therapy in patients with KPC-Kp CZA-R infections is of crucial importance.Clinical characteristics and outcomes of infections caused by ceftazidime/avibactam-resistant (CZA-R) Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae were analyzed. Ceftazidime/avibactam-resistant and meropenem-susceptible KPC variants accounted for more than half of patients. Infections due to CZA-R KPC-Kp often occur in patients who had previously received CZA, especially in the presence of strains susceptible to meropenem. Nevertheless, one-third of patients had never received CZA before isolation of CZA strains. Infection severity was the only independent predictor of 30-day mortality

    Role of miR-200c in myogenic differentiation impairment via p66Shc: implication in skeletal muscle regeneration of dystrophic mdx mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is a genetic disease associated with mutations of Dystrophin gene that regulate myofiber integrity and muscle degeneration, characterized by oxidative stress increase. We previously published that reactive oxygen species (ROS) induce miR-200c that is responsible for apoptosis and senescence. Moreover, we demonstrated that miR-200c increases ROS production and phosphorylates p66Shc in Ser-36. p66Shc plays an important role in muscle differentiation; we previously showed that p66Shc(-/-) muscle satellite cells display lower oxidative stress levels and higher proliferation rate and differentiated faster than wild-type (wt) cells. Moreover, myogenic conversion, induced by MyoD overexpression, is more efficient in p66Shc(-/-) fibroblasts compared to wt cells. Herein, we report that miR-200c overexpression in cultured myoblasts impairs skeletal muscle differentiation. Further, its overexpression in differentiated myotubes decreases differentiation indexes. Moreover, anti-miR-200c treatment ameliorates myogenic differentiation. In keeping, we found that miR-200c and p66Shc Ser-36 phosphorylation increase in mdx muscles. In conclusion, miR-200c inhibits muscle differentiation, whereas its inhibition ameliorates differentiation and its expression levels are increased in mdx mice and in differentiated human myoblasts of DMD. Therefore, miR-200c might be responsible for muscle wasting and myotube loss, most probably via a p66Shc-dependent mechanism in a pathological disease such as DMD

    Resistance to Ceftazidime/Avibactam in Klebsiella pneumoniae KPC-Producing Isolates: A Real-Life Observational Study

    Get PDF
    Background: Ceftazidime/avibactam (CAZ-AVI) resistance amongst Enterobacterales is worryingly increasing worldwide. Objectives: The aim of this study was to collect and describe real-life data on CAZ-AVI-resistant Klebsiella pneumoniae (KP) isolates in our University Hospital, with the ultimate goal of evaluating possible risk factors related to the acquisition of resistance. Methods: This is a retrospective observational study, including unique Klebsiella pneumoniae (KP) isolates resistant to CAZ-AVI (CAZ-AVI-R) and producing only KPC, collected from July 2019 to August 2021 at Policlinico Tor Vergata, Rome, Italy. The pathogen's list was obtained from the microbiology laboratory; clinical charts of the corresponding patients were reviewed to collect demographic and clinical data. Subjects treated as outpatients or hospitalized for <48 h were excluded. Patients were then divided into two groups: S group, if they had a prior isolate of CAZ-AVI-susceptible KP-KPC, and R group, if the first documented isolate of KP-KPC was resistant to CAZ-AVI. Results: Forty-six unique isolates corresponding to 46 patients were included in the study. The majority of patients (60.9%) were hospitalized in an intensive care unit, 32.6% in internal medicine wards and 6.5% in surgical wards. A total of 15 (32.6%) isolates were collected from rectal swabs, representing a colonization. Amongst clinically relevant infections, pneumonia and urinary tract infections were the most commonly found (5/46, 10.9% each). Half of the patients received CAZ-AVI prior to isolation of the KP-KPC CAZ-AVI-R (23/46). This percentage was significantly higher in patients in the S group compared to patients in the R group (69.3% S group vs. 25% R group, p = 0.003). No differences between the two groups were documented in the use of renal replacement therapy or in the infection site. The clinically relevant CAZ-AVI-R KP infections (22/46, 47.8%) were all treated with a combination therapy, 65% including colistin and 55% including CAZ-AVI, with an overall clinical success of 38.1%. Conclusions: Prior use of CAZ-AVI was associated with the emergence of drug resistance

    Validation of the T-Lymphocyte Subset Index (TLSI) as a Score to Predict Mortality in Unvaccinated Hospitalized COVID-19 Patients

    Get PDF
    Lymphopenia has been consistently reported as associated with severe coronavirus disease 2019 (COVID-19). Several studies have described a profound decline in all T-cell subtypes in hospitalized patients with severe and critical COVID-19. The aim of this study was to assess the role of T-lymphocyte subset absolute counts measured at ward admission in predicting 30-day mortality in COVID-19 hospitalized patients, validating a new prognostic score, the T-Lymphocyte Subset Index (TLSI, range 0–2), based on the number of T-cell subset (CD4+ and CD8+) absolute counts that are below prespecified cutoffs. These cutoff values derive from a previously published work of our research group at Policlinico Tor Vergata, Rome, Italy: CD3+CD4+ < 369 cells/µL, CD3+CD8+ < 194 cells/µL. In the present single-center retrospective study, T-cell subsets were assessed on admission to the infectious diseases ward. Statistical analysis was performed using JASP (Version 0.16.2. JASP Team, 2022, The Amsterdam, The Netherlands) and Prism8 (version 8.2.1. GraphPad Software, San Diego, CA, USA). Clinical and laboratory parameters of 296 adult patients hospitalized because of COVID-19 were analyzed. The overall mortality rate was 22.3% (66/296). Survivors (S) had a statistically significant lower TLSI score compared to non-survivors (NS) (p < 0.001). Patients with increasing TLSI scores had proportionally higher rates of 30-day mortality (p < 0.0001). In the multivariable logistic analysis, the TLSI was an independent predictor of in-hospital 30-day mortality (OR: 1.893, p = 0.003). Survival analysis showed that patients with a TLSI > 0 had an increased risk of death compared to patients with a TLSI = 0 (hazard ratio: 2.83, p < 0.0001). The TLSI was confirmed as an early and independent predictor of COVID-19 in-hospital 30-day mortalit

    The Impact of Viral and Bacterial Co-Infections and Home Antibiotic Treatment in SARS-CoV-2 Hospitalized Patients at the Policlinico Tor Vergata Hospital, Rome, Italy

    Get PDF
    Co-infections during COVID-19 may worsen patients’ outcomes. This study reports the results of a screening assessing the presence of co-infections among patients hospitalized for SARS-CoV-2 infection in the Infectious Diseases-Ward of the Policlinico Tor Vergata Hospital, Rome, Italy, from 1 January to 31 December 2021. Data on hepatitis B and C virus, urinary antigens for legionella pneumophila and streptococcus pneumoniae, pharyngeal swab for respiratory viruses, QuantiFERON®-TB Gold Plus assay (QFT-P), blood cultures and pre-hospitalization antibiotic prescription were recorded. A total of 482 patients were included, 61% males, median age of 65 years (IQR 52–77), median Charlson comorbidity index of 4 (IQR 2–5). The mortality rate was 12.4%; 366 patients needed oxygen supply. In total, 151 patients (31.3%) received home antibiotics without any association with the outcome. No significant association between mortality and the positivity of viral hepatitis markers was found. Out of 442 patients, 125 had an indeterminate QFT-P, associated with increased mortality. SARS-CoV-2 was the only respiratory virus detected among 389 pharyngeal swabs; 15/428 patients were positive for S. pneumoniae; none for L. pneumophila. In total, 237 blood cultures were drawn within 48 h from hospital admission: 28 were positive and associated with increased mortality. In our cohort, bacterial and viral co-infections in COVID-19 hospitalized patients were rare and not associated with higher mortality

    In patients with severe COVID-19, the profound decrease in the peripheral Bblood T-cell subsets is correlated with an increase of QuantiFERON-TB Gold Plus indeterminate rates and reflecting a reduced interferon-gamma production

    No full text
    Increased rates of indeterminate QuantiFERON-TB Gold Plus Assay (QFT-Plus) were demonstrated in patients hospitalized with Coronavirus Disease (COVID)-19. We aimed to define the prevalence and characteristics of hospitalized COVID-19 patients with indeterminate QFT-Plus. A retrospective study was performed including hospitalized COVID-19 patients, stratified in survivors and non-survivors, non-severe and severe according to the maximal oxygen supply required. Statistical analysis was performed using JASP ver0.14.1 and GraphPad Prism ver8.2.1. A total of 420 patients were included, median age: 65 years, males: 66.4%. The QFT-Plus was indeterminate in 22.1% of patients. Increased rate of indeterminate QFT-Plus was found in non-survivors (p = 0.013) and in severe COVID-19 patients (p < 0.001). Considering the Mitogen-Nil condition of the QFT-Plus, an impaired production of interferon-gamma (IFN-Îł) was found in non-survivors (p < 0.001) and in severe COVID-19 patients (p < 0.001). A positive correlation between IFN-Îł levels in the Mitogen-Nil condition and the absolute counts of CD3+ (p < 0.001), CD4+ (p < 0.001), and CD8+ (p < 0.001) T-lymphocytes was found. At the multivariable analysis, CD3+ T-cell absolute counts and CD4/CD8 ratio were confirmed as independent predictors of indeterminate results at the QFT-Plus. Our study confirmed the increased rate of indeterminate QFT-Plus in COVID-19 patients, mainly depending on the peripheral blood T-lymphocyte depletion found in the most severe cases
    corecore