2 research outputs found

    Cooperative Induction of a Tolerogenic Dendritic Cell Phenotype by Cytokines Secreted by Pancreatic Carcinoma Cells

    Get PDF
    AbstractAg presentation by dendritic cells (DC) is essential to effective antitumor T cell responses in cancer patients. Depending on their origin, maturation state, and the ambient cytokine milieu, DC can differentiate into distinct subpopulations, which preferentially either induce Th1 cell activation (CD11c+,CD123− myeloid DC (MDC)) or immunosuppressive T cell development (CD11c−,CD123+ plasmacytoid DC (PDC)). The present study was undertaken to characterize the effects of pancreatic carcinoma cell-derived cytokines on immature monocyte-derived DC (iMo-DC) in vitro and in vivo. Medium conditioned by human pancreatic carcinoma cells inhibited iMo-DC proliferation, expression of costimulatory molecules (CD80 and CD40) and of HLA-DR, and functional activity as assessed by MLR and IL-12p70 production. iMo-DC generated from pancreatic carcinoma patients in advanced stages of the disease similarly showed decreased levels of HLA-DR expression and reduced ability to stimulate MLR in response to CD40L and IFN-γ. Moreover, in tumor-patient peripheral blood, the ratio of MDC to PDC cells was lower than in healthy controls due to reduced numbers of MDC CD11c+ cells. Importantly, rather than a single cytokine, a combination of tumor-derived cytokines was responsible for these effects; these were primarily TGF-β, IL-10, and IL-6, but not vascular endothelial growth factor. In summary, we have identified an array of pancreatic carcinoma-derived cytokines that cooperatively affect iMo-DC activation in a manner consistent with ineffective antitumor immune responses

    Antagonistic interactions between gemcitabine and 5-fluorouracil in the human pancreatic carcinoma cell line Capan-2.

    Get PDF
    Although the recently-developed Gemcitabine (GEM) has renewed interest in clinical research in pancreatic carcinoma, it offers modest improvement of tumor-related symptoms and marginal survival advantage, even when combined with other currently-available chemotherapeutic agents such as 5-Fluorouracil (5-FU). We hypothesized that this disappointing result could be due to an interaction between the two drugs affecting cytotoxic activity. We measured in-vitro growth inhibition, cell cycle distribution, gene and protein expression of apoptosis regulators bcl-2, bcl-x and survivin, NFkappaB and telomerase activities of human pancreatic carcinoma cell line Capan-2 following exposure to GEM and 5-FU singly or combined, by MTT assay and median effect analysis, flow cytometry, real-time RT-PCR, Western blotting, electrophoretic mobility shift assay (EMSA) and telomeric repeat amplification protocol (TRAP) assay, respectively. We found cell growth to be inhibited by both drugs, decreasing the percentage of cells in S and G2/M phases and inducing apoptosis, dependent on the levels of bcl-2, bcl-xL and survivin expression in the case of 5-FU, but not for GEM. Moreover, while telomerase activity was reduced equally by both drugs, 5-FU but not GEM effectively downregulated NFkappaB binding activity. Intriguingly, a substantial antagonistic effect was noticed when GEM was combined with 5-FU in the concentration range tested, with the exception of the TRAP assay. These indications of an antagonistic interaction between GEM and 5-FU in some pancreatic cancer context urge further investigation of both genetic and non-genetic differences to identify the variables most relevant for optimal selection and dosing of treatment for the individual patient
    corecore