7 research outputs found

    The Evaluation and Quantitation of Dihydrogen Metabolism Using Deuterium Isotope in Rats

    Get PDF
    Despite the significant interest in molecular hydrogen as an antioxidant in the last eight years, its quantitative metabolic parameters in vivo are still lacking, as is an appropriate method for determination of hydrogen effectivity in the mammalian organism under various conditions.Intraperitoneally-applied deuterium gas was used as a metabolic tracer and deuterium enrichment was determined in the body water pool. Also, in vitro experiments were performed using bovine heart submitochondrial particles to evaluate superoxide formation in Complex I of the respiratory chain.A significant oxidation of about 10% of the applied dose was found under physiological conditions in rats, proving its antioxidant properties. Hypoxia or endotoxin application did not exert any effect, whilst pure oxygen inhalation reduced deuterium oxidation. During in vitro experiments, a significant reduction of superoxide formation by Complex I of the respiratory chain was found under the influence of hydrogen. The possible molecular mechanisms of the beneficial effects of hydrogen are discussed, with an emphasis on the role of iron sulphur clusters in reactive oxygen species generation and on iron species-dihydrogen interaction.According to our findings, hydrogen may be an efficient, non-toxic, highly bioavailable and low-cost antioxidant supplement for patients with pathological conditions involving ROS-induced oxidative stress

    Selected Risk Nutritional Factors for Chemotherapy-Induced Polyneuropathy

    No full text
    The present study seeks to identify the nutritional risk factors involved in the development of neuropathies induced by chemotherapeutic treatments. Unlike the gastrointestinal or hematological adverse effects of chemotherapy there is no protective treatment strategy for polyneuropathy. The aim of this study was to find possible deficiencies in nutritional factors, which can be used for supplementation in the future for prevention of chemotherapy-induced neuropathy development. We analyzed 70 patients undergoing paclitaxel chemotherapy and evaluated the risk factors involved in chemotherapy-induced peripheral neuropathy (CIPN). Several risk factors were considered in the development of CIPN, including deficiency of vitamin B1, B6, and D and fatty acids. The occurrence of CIPN complication in 60% cases was observed. We found significant differences in vitamin D and saturated fatty acid concentration. Vitamin D levels in the group without CIPN were estimated to be 38.2 (24.95, 47.63) nmol/L, whereas in the group with CIPN it was determined to be 25.6 (19.7, 32.55) nmol/L, p = 0.008. The level of total saturated fatty acids in the group without CIPN was of 32.613 Area % (31.322; 36.262), whereas in the group with CIPN it was of 34.209 Area % (32.86; 39.386), p = 0.01. The obtained results suggest a diet lower in saturated fatty acid content during chemotherapy. The most significant finding was that supplementation of vitamin D before chemotherapy could be an efficient neuroprotective in CIPN prophylaxis, as significantly lower levels 25OH derivative of vitamin D were observed in the CIPN group throughout the study period

    Deuterium oxidation in vivo.

    No full text
    <p>Deuterium isotope excess in body water from deuterium gas oxidation in vivo (A) and oxidation percentage of supplied dose of deuterium gas (B).</p

    The Impact of Glucose-Based or Lipid-Based Total Parenteral Nutrition on the Free Fatty Acids Profile in Critically Ill Patients

    No full text
    Introduction: Our study aim was to assess how the macronutrient intake during total parenteral nutrition (TPN) modulates plasma total free fatty acids (FFAs) levels and individual fatty acids in critically ill patients. Method: Adult patients aged 18&ndash;80, admitted to the intensive care unit (ICU), who were indicated for TPN, with an expected duration of more than three days, were included in the study. Isoenergetic and isonitrogenous TPN solutions were given with a major non-protein energy source, which was glucose (group G) or glucose and lipid emulsions (Smof lipid; group L). Blood samples were collected on days 0, 1, 3, 6, 9, 14, and 28. Results: A significant decrease (p &lt; 0.001) in total FFAs occurred in both groups with a bigger decrease in group G (p &lt; 0.001) from day 0 (0.41 &plusmn; 0.19 mmol∙L&minus;1) to day 28 (0.10 &plusmn; 0.07 mmol∙L&minus;1). Increased palmitooleic acid and decreased linoleic and docosahexaenoic acids, with a trend of increased mead acid to arachidonic acid ratio, on day 28 were observed in group G in comparison with group L. Group G had an insignificant increase in leptin with no differences in the concentrations of vitamin E, triacylglycerides, and plasminogen activator inhibitor-1. Conclusion: Decreased plasma FFA in critically ill patients who receive TPN may result from increased insulin sensitivity with a better effect in group G, owing to higher insulin and glucose dosing and no lipid emulsions. It is advisable to include a lipid emulsion at the latest from three weeks of TPN to prevent essential fatty acid deficiency
    corecore