15 research outputs found

    The induction of microRNA-16 in colon cancer cells by protein arginine deiminase inhibition causes a p53-dependent cell cycle arrest.

    Get PDF
    Protein Arginine Deiminases (PADs) catalyze the post-translational conversion of peptidyl-Arginine to peptidyl-Citrulline in a calcium-dependent, irreversible reaction. Evidence is emerging that PADs play a role in carcinogenesis. To determine the cancer-associated functional implications of PADs, we designed a small molecule PAD inhibitor (called Chor-amidine or Cl-amidine), and tested the impact of this drug on the cell cycle. Data derived from experiments in colon cancer cells indicate that Cl-amidine causes a G1 arrest, and that this was p53-dependent. In a separate set of experiments, we found that Cl-amidine caused a significant increase in microRNA-16 (miRNA-16), and that this increase was also p53-dependent. Because miRNA-16 is a putative tumor suppressor miRNA, and others have found that miRNA-16 suppresses proliferation, we hypothesized that the p53-dependent G1 arrest associated with PAD inhibition was, in turn, dependent on miRNA-16 expression. Results are consistent with this hypothesis. As well, we found the G1 arrest is at least in part due to the ability of Cl-amidine-mediated expression of miRNA-16 to suppress its\u27 G1-associated targets: cyclins D1, D2, D3, E1, and cdk6. Our study sheds light into the mechanisms by which PAD inhibition can protect against or treat colon cancer

    Skin Mast Cell-Driven Ceramides Drive Early Apoptosis in Pre-Symptomatic Eczema in Mice

    No full text
    Atopic dermatitis (AD or eczema) is the most common chronic inflammatory skin disorder worldwide. Ceramides (Cer) maintain skin barrier functions, which are disrupted in lesional skin of AD patients. However, Cer status during the pre-lesional phase of AD is not well defined. Using a variation of human AD-like preclinical model consisting of a 7-day topical exposure to ovalbumin (OVA), or control, we observed elevation of Cer C16 and C24. Skin mRNA quantification of enzymes involved in Cer metabolism [Cer synthases (CerS) and ceramidases (Asah1/Asah2)], which revealed augmented CerS 4, 5 and 6 and Asah1. Given the overall pro-apoptotic nature of Cer, local apoptosis was assessed, then quantified using novel morphometric measurements of cleaved caspase (Casp)-3-restricted immunofluorescence signal in skin samples. Apoptosis was induced in response to OVA. Because apoptosis may occur downstream of endoplasmic reticulum (ER) stress, we measured markers of ER stress-induced apoptosis and found elevated skin-associated CHOP protein upon OVA treatment. We previously substantiated the importance of mast cells (MC) in initiating early skin inflammation. OVA-induced Cer increase and local apoptosis were prevented in MC-deficient mice; however, they were restored following MC reconstitution. We propose that the MC/Cer axis is an essential pathogenic feature of pre-lesional AD, whose targeting may prevent disease development

    Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor

    No full text
    Inflammatory bowel diseases (IBDs), mainly Crohn's disease and ulcerative colitis, are dynamic, chronic inflammatory conditions that are associated with an increased colon cancer risk. Inflammatory cell apoptosis is a key mechanism for regulating IBD. Peptidylarginine deiminases (PADs) catalyze the posttranslational conversion of peptidylarginine to peptidylcitrulline in a calcium-dependent, irreversible reaction and mediate the effects of proinflammatory cytokines. Because PAD levels are elevated in mouse and human colitis, we hypothesized that a novel small-molecule inhibitor of the PADs, i.e., chloramidine (Cl-amidine), could suppress colitis in a dextran sulfate sodium mouse model. Results are consistent with this hypothesis, as demonstrated by the finding that Cl-amidine treatment, both prophylactic and after the onset of disease, reduced the clinical signs and symptoms of colitis, without any indication of toxic side effects. Interestingly, Cl-amidine drives apoptosis of inflammatory cells in vitro and in vivo, providing a mechanism by which Cl-amidine suppresses colitis. In total, these data help validate the PADs as therapeutic targets for the treatment of IBD and further suggest Cl-amidine as a candidate therapy for this disease

    D-amino acid based protein arginine deiminase inhibitors: Synthesis, pharmacokinetics, and in cellulo efficacy.

    No full text
    The protein arginine deiminases (PADs) are known to play a crucial role in the onset and progression of multiple inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, and cancer. However, it is not known how each of the five PAD isozymes contributes to disease pathogenesis. As such, potent, selective, and bioavailable PAD inhibitors will be useful chemical probes to elucidate the specific roles of each isozyme. Since D-amino amino acids often possess enhanced in cellulo stability, and perhaps unique selectivities, we synthesized a series of D-amino acid analogs of our pan-PAD inhibitor Cl-amidine, hypothesizing that this change would provide inhibitors with enhanced pharmacokinetic properties. Herein, we demonstrate that d-Cl-amidine and d-o-F-amidine are potent and highly selective inhibitors of PAD1. The pharmacokinetic properties of d-Cl-amidine were moderately improved over those of l-Cl-amidine, and this compound exhibited similar cell killing in a PAD1 expressing, triple-negative MDA-MB-231 breast cancer cell line. These inhibitors represent an important step in our efforts to develop stable, bioavailable, and highly selective inhibitors for all of the PAD isozymes

    Resveratrol Protects against Skin Inflammation through Inhibition of Mast Cell, Sphingosine Kinase-1, Stat3 and NF-κB p65 Signaling Activation in Mice

    No full text
    Inflammation is pathogenic to skin diseases, including atopic dermatitis (AD) and eczema. Treatment for AD remains mostly symptomatic with newer but costly options, tainted with adverse side effects. There is an unmet need for safe therapeutic and preventative strategies for AD. Resveratrol (R) is a natural compound known for its anti-inflammatory properties. However, animal and human R studies have yielded contrasting results. Mast cells (MCs) are innate immune skin-resident cells that initiate the development of inflammation and progression to overt disease. R’s effects on MCs are also controversial. Using a human-like mouse model of AD development consisting of a single topical application of antigen ovalbumin (O) for 7 days, we previously established that the activation of MCs by a bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) initiated substantial skin remodeling compared to controls. Here, we show that daily R application normalized O-mediated epidermal thickening, ameliorated cell infiltration, and inhibited skin MC activation and chemokine expression. We unraveled R’s multiple mechanisms of action, including decreased activation of the S1P-producing enzyme, sphingosine kinase 1 (SphK1), and of transcription factors Signal Transducer and Activator of Transcription 3 (Stat3) and NF-κBp65, involved in chemokine production. Thus, R may be poised for protection against MC-driven pathogenic skin inflammation

    Cl-amidine suppresses mRNA levels of miRNA-16 targets.

    No full text
    <p>HCT 116 cells were treated with 1x PBS (−) or 25 µg/mL Cl-amidine (+) for 24 h., then RNA harvested for qPCR as described in methods. The CCND1, CCND2, CCND3, CCNE1, and cdk6 gene expression were normalized by GAPDH gene expression. *, indicates significant difference from the control (−) (p<0.05).</p

    Percentage of cells in G1, S and G2 following exposure to Cl-amidine (50 µg/ml).

    No full text
    *<p>, indicates significant increase in the number of cells in G1 phase.</p>**<p>, indicates significant decrease in the number of cells in S phase.</p>***<p>, indicates significant decrease in the number of cells in G2 phase.</p

    miRNA-16 expression changes in p53 WT colon cancer cells after exposure to Cl-amidine.

    No full text
    <p>(<b>A</b>) HCT 116 WT cells; (<b>C</b>) LS-180 cells.; (<b>C</b>) HCT 116 p53<sup>−/−</sup> cells. Cells were exposed to 25 µg/mL Cl-amidine for indicated times (N = 9 plates per time point). Relative endogenous miR-16 expression levels were detected by qRT-PCR using Taqman primers and probes to detect mature miR-16 and the small nuclear RNA RNU6B (U6), an internal control. Relative miR-16 expression levels were normalized to the average value of the non-treated samples (0 h). *, indicates significant difference from the 0 hr control.</p

    Model diagram generated by experiments carried out in this manuscript.

    No full text
    <p>The inhibition of PADs by Cl-amidine activates p53, which in turn activates miRNA-16. The activation of miRNA-16 causes a G1 cell cycle arrest, presumably by targeting cyclins D, E and/or cdk6.</p
    corecore