26 research outputs found

    Identification of a Novel UT-B Urea Transporter in Human Urothelial Cancer

    Get PDF
    The urea transporter UT-B is widely expressed and has been studied in erythrocyte, kidney, brain and intestines. Interestingly, UT-B gene has been found more abundant in bladder than any other tissue. Recently, gene analyses demonstrate that SLC14A1 (UT-B) gene mutations are associated with bladder cancer, suggesting that urea transporter UT-B may play an important role in bladder carcinogenesis. In this study, we examined UT-B expression in bladder cancer with human primary bladder cancer tissues and cancer derived cell lines. Human UT-B has two isoforms. We found that normal bladder expresses long form of UT-B2 but was lost in 8 of 24 (33%) or significantly downregulated in 16 of 24 (67%) of primary bladder cancer patients. In contrast, the short form of UT-B1 lacking exon 3 was detected in 20 bladder cancer samples. Surprisingly, a 24-nt in-frame deletion in exon 4 in UT-B1 (UT-B1Δ24) was identified in 11 of 20 (55%) bladder tumors. This deletion caused a functional defect of UT-B1. Immunohistochemistry revealed that UT-B protein levels were significantly decreased in bladder cancers. Western blot analysis showed a weak UT-B band of 40 kDa in some tumors, consistent with UT-B1 gene expression detected by RT-PCR. Interestingly, bladder cancer associate UT-B1Δ24 was barely sialylated, reflecting impaired glycosylation of UT-B1 in bladder tumors. In conclusion, SLC14A1 gene and UT-B protein expression are significantly changed in bladder cancers. The aberrant UT-B expression may promote bladder cancer development or facilitate carcinogenesis induced by other carcinogens

    Efficacy of Intravesical Nadofaragene Firadenovec for Patients With Bacillus Calmette-Guérin-Unresponsive Nonmuscle-Invasive Bladder Cancer: 5-Year Follow-Up From a Phase 3 Trial

    Get PDF
    Purpose: Nadofaragene firadenovec-vncg is a nonreplicating adenoviral vector–based gene therapy for bacillus Calmette-Guérin (BCG)–unresponsive carcinoma in situ (CIS) with/without high-grade Ta/T1. We report outcomes following 5 years of planned follow-up. Materials and Methods: This open-label phase 3 trial (NCT02773849) enrolled patients with BCG-unresponsive nonmuscle-invasive bladder cancer in 2 cohorts: CIS ± Ta/T1 (CIS; n = 107) and Ta/T1 without CIS (Ta/T1 cohort; n = 50). Patients received 75 mL (3 × 1011 vp/mL) nadofaragene firadenovec intravesically once every 3 months with cystoscopy and cytology assessments, with continued treatment offered to those remaining high grade recurrence–free (HGRF). Results: One hundred fifty-seven patients were enrolled from 33 US sites (n = 151 included in efficacy analyses). Median follow-up was 50.8 months (interquartile range 39.1-60.0), with 27% receiving ≥ 5 instillations and 7.6% receiving treatment for ≥ 57 months. Of patients with CIS 5.8% (95% CI 2.2-12.2) were HGRF at month 57, and 15% (95% CI 6.1-27.8) of patients with high-grade Ta/T1 were HGRF at month 57. Kaplan-Meier–estimated HGRF survival at 57 months was 13% (95% CI 6.9-21.5) and 33% (95% CI 19.5-46.6) in the CIS and Ta/T1 cohorts, respectively. Cystectomy-free survival at month 60 was 49% (95% CI 40.0-57.1): 43% (95% CI 32.2-53.7) in the CIS cohort and 59% (95% CI 43.1-71.4) in the Ta/T1 cohort. Overall survival at 60 months was 80% (71.0, 86.0): 76% (64.6-84.5) and 86% (70.9-93.5) in the CIS and Ta/T1 cohorts, respectively. Only 5 patients (4 with CIS and 1 with Ta/T1) experienced clinical progression to muscle-invasive disease. Conclusions: At 60 months, nadofaragene firadenovec-vncg allowed bladder preservation in nearly half of the patients and proved to be a safe option for BCG-unresponsive nonmuscle-invasive bladder cancer

    Extended lymph node dissection in robotic radical prostatectomy: Current status

    No full text
    Introduction: The role and extent of extended pelvic lymph node dissection (ePLND) during radical prostatectomy (RP) for prostate cancer patients remains unclear. Materials and Methods: A PubMed literature search was performed for studies reporting on treatment regimens and outcomes in patients with prostate cancer treated by RP and extended lymph node dissection between 1999 and 2013. Results: Studies have shown that RP can improve progression-free and overall survival in patients with lymph node-positive prostate cancer. While this finding requires further validation, it does allow urologists to question the former treatment paradigm of aborting surgery when lymph node invasion from prostate cancer occurred, especially in patients with limited lymph node tumor infiltration. Studies show that intermediate- and high-risk patients should undergo ePLND up to the common iliac arteries in order to improve nodal staging. Conclusions: Evidence from the literature suggests that RP with ePLND improves survival in lymph node-positive prostate cancer. While studies have shown promising results, further improvements and understanding of the surgical technique and post-operative treatment are required to improve treatment for prostate cancer patients with lymph node involvement

    Clinical T1 urothelial bladder cancer: USC experience.

    No full text

    Identification of a Novel UT-B Urea Transporter in Human Urothelial Cancer

    No full text
    The urea transporter UT-B is widely expressed and has been studied in erythrocyte, kidney, brain and intestines. Interestingly, UT-B gene has been found more abundant in bladder than any other tissue. Recently, gene analyses demonstrate that SLC14A1 (UT-B) gene mutations are associated with bladder cancer, suggesting that urea transporter UT-B may play an important role in bladder carcinogenesis. In this study, we examined UT-B expression in bladder cancer with human primary bladder cancer tissues and cancer derived cell lines. Human UT-B has two isoforms. We found that normal bladder expresses long form of UT-B2 but was lost in 8 of 24 (33%) or significantly downregulated in 16 of 24 (67%) of primary bladder cancer patients. In contrast, the short form of UT-B1 lacking exon 3 was detected in 20 bladder cancer samples. Surprisingly, a 24-nt in-frame deletion in exon 4 in UT-B1 (UT-B1 1 24) was identified in 11 of 20 (55%) bladder tumors. This deletion caused a functional defect of UT-B1. Immunohistochemistry revealed that UT-B protein levels were significantly decreased in bladder cancers. Western blot analysis showed a weak UT-B band of 40 kDa in some tumors, consistent with UT-B1 gene expression detected by RT-PCR. Interestingly, bladder cancer associate UT-B1 1 24 was barely sialylated, reflecting impaired glycosylation of UT-B1 in bladder tumors. In conclusion, SLC14A1 gene and UT-B protein expression are significantly changed in bladder cancers. The aberrant UT-B expression may promote bladder cancer development or facilitate carcinogenesis induced by other carcinogens.Emory URC grant; NIH [R01-DK087838, R01-DK89828, R01-DK41707]; China Scholarship Council (CSC) under the State Scholarship FundSCI(E)ARTICLE

    Bladder cancer

    No full text
    Bladder cancer is a highly prevalent disease and is associated with substantial morbidity, mortality and cost. Environmental or occupational exposures to carcinogens, especially tobacco, are the main risk factors for bladder cancer. Most bladder cancers are diagnosed after patients present with macroscopic haematuria, and cases are confirmed after transurethral resection of bladder tumour (TURBT), which also serves as the first stage of treatment. Bladder cancer develops via two distinct pathways, giving rise to non-muscle-invasive papillary tumours and non-papillary (solid) muscle-invasive tumours. The two subtypes have unique pathological features and different molecular characteristics. Indeed, The Cancer Genome Atlas project identified genetic drivers of muscle-invasive bladder cancer (MIBC) as well as subtypes of MIBC with distinct characteristics and therapeutic responses. For non-muscle-invasive bladder cancer (NMIBC), intravesical therapies (primarily Bacillus Calmette-Guerin (BCG)) with maintenance are the main treatments to prevent recurrence and progression after initial TURBT; additional therapies are needed for those who do not respond to BCG. For localized MIBC, optimizing care and reducing morbidity following cystectomy are important goals. In metastatic disease, advances in our genetic understanding of bladder cancer and in immunotherapy are being translated into new therapies
    corecore