3 research outputs found

    Bronchial gene expression signature associated with rate of subsequent FEV1 decline in individuals with and at risk of COPD

    No full text
    Background COPD is characterised by progressive lung function decline. Leveraging prior work demonstrating bronchial airway COPD-associated gene expression alterations, we sought to determine if there are alterations associated with differences in the rate of FEV1 decline. Methods We examined gene expression among ever smokers with and without COPD who at baseline had bronchial brushings profiled by Affymetrix microarrays and had longitudinal lung function measurements (n=134; mean follow-up=6.38 +/- 2.48 years). Gene expression profiles associated with the rate of FEV1 decline were identified by linear modelling. Results Expression differences in 171 genes were associated with rate of FEV1 decline (false discovery rate <0.05). The FEV1 decline signature was replicated in an independent dataset of bronchial biopsies from patients with COPD (n=46; p=0.018; mean follow-up=6.76 +/- 1.32 years). Genes elevated in individuals with more rapid FEV1 decline are significantly enriched among the genes altered by modulation of XBP1 in two independent datasets (Gene Set Enrichment Analysis (GSEA) p<0.05) and are enriched in mucin-related genes (GSEA p<0.05). Conclusion We have identified and replicated an airway gene expression signature associated with the rate of FEV1 decline. Aspects of this signature are related to increased expression of XBP1-regulated genes, a transcription factor involved in the unfolded protein response, and genes related to mucin production. Collectively, these data suggest that molecular processes related to the rate of FEV1 decline can be detected in airway epithelium, identify a possible indicator of FEV1 decline and make it possible to detect, in an early phase, ever smokers with and without COPD most at risk of rapid FEV1 decline

    Bronchial gene expression signature associated with rate of subsequent FEV1 decline in individuals with and at risk of COPD

    No full text
    Background COPD is characterised by progressive lung function decline. Leveraging prior work demonstrating bronchial airway COPD-associated gene expression alterations, we sought to determine if there are alterations associated with differences in the rate of FEV1 decline. Methods We examined gene expression among ever smokers with and without COPD who at baseline had bronchial brushings profiled by Affymetrix microarrays and had longitudinal lung function measurements (n=134; mean follow-up=6.38 +/- 2.48 years). Gene expression profiles associated with the rate of FEV1 decline were identified by linear modelling. Results Expression differences in 171 genes were associated with rate of FEV1 decline (false discovery rate <0.05). The FEV1 decline signature was replicated in an independent dataset of bronchial biopsies from patients with COPD (n=46; p=0.018; mean follow-up=6.76 +/- 1.32 years). Genes elevated in individuals with more rapid FEV1 decline are significantly enriched among the genes altered by modulation of XBP1 in two independent datasets (Gene Set Enrichment Analysis (GSEA) p<0.05) and are enriched in mucin-related genes (GSEA p<0.05). Conclusion We have identified and replicated an airway gene expression signature associated with the rate of FEV1 decline. Aspects of this signature are related to increased expression of XBP1-regulated genes, a transcription factor involved in the unfolded protein response, and genes related to mucin production. Collectively, these data suggest that molecular processes related to the rate of FEV1 decline can be detected in airway epithelium, identify a possible indicator of FEV1 decline and make it possible to detect, in an early phase, ever smokers with and without COPD most at risk of rapid FEV1 decline.Pathogenesis and treatment of chronic pulmonary disease

    Clinical Study of Aspirin and Zileuton on Biomarkers of Tobacco-Related Carcinogenesis in Current Smokers

    No full text
    The chemopreventive effect of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) on lung cancer risk is supported by epidemiologic and preclinical studies. Zileuton, a 5-lipoxygenase inhibitor, has additive activity with NSAIDs against tobacco carcinogenesis in preclinical models. We hypothesized that cyclooxygenase plus 5-lipoxygenase inhibition would be more effective than a placebo in modulating the nasal epithelium gene signatures of tobacco exposure and lung cancer. We conducted a randomized, double-blinded study of low-dose aspirin plus zileuton vs. double placebo in current smokers to compare the modulating effects on nasal gene expression and arachidonic acid metabolism. In total, 63 participants took aspirin 81 mg daily plus zileuton (Zyflo CR) 600 mg BID or the placebo for 12 weeks. Nasal brushes from the baseline, end-of-intervention, and one-week post intervention were profiled via microarray. Aspirin plus zilueton had minimal effects on the modulation of the nasal or bronchial gene expression signatures of smoking, lung cancer, and COPD but favorably modulated a bronchial gene expression signature of squamous dysplasia. Aspirin plus zileuton suppressed urinary leukotriene but not prostaglandin E2, suggesting shunting through the cyclooxygenase pathway when combined with 5-lipoxygenase inhibition. Continued investigation of leukotriene inhibitors is needed to confirm these findings, understand the long-term effects on the airway epithelium, and identify the safest, optimally dosed agents. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore