40 research outputs found

    Anomalous optical response of graphene on hexagonal boron nitride substrates

    Full text link
    Graphene/hBN heterostructures can be considered as one of the basic building blocks for the next-generation optoelectronics mostly owing to the record-high electron mobilities. However, currently, the studies of the intrinsic optical properties of graphene are limited to the standard substrates (SiO2/Si, glass, quartz) despite the growing interest in graphene/hBN heterostructures. This can be attributed to a challenging task of the determination of hBN's strongly anisotropic dielectric tensor in the total optical response. In this study, we overcome this issue through imaging spectroscopic ellipsometry utilizing simultaneous analysis of hBN's optical response with and without graphene monolayers. Our technique allowed us to retrieve the optical constants of graphene from graphene/hBN heterostructures in a broad spectral range of 250-950 nm. Our results suggest that graphene's absorption on hBN may exceed the one of graphene on SiO2/Si by about 60 %

    Broadband optical properties of monolayer and bulk MoS2

    Get PDF
    Layered semiconductors such as transition metal dichalcogenides (TMDs) offer endless possibilities for designing modern photonic and optoelectronic components. However, their optical engineering is still a challenging task owing to multiple obstacles, including the absence of a rapid, contactless, and the reliable method to obtain their dielectric function as well as to evaluate in situ the changes in optical constants and exciton binding energies. Here, we present an advanced approach based on ellipsometry measurements for retrieval of dielectric functions and the excitonic properties of both monolayer and bulk TMDs. Using this method, we conduct a detailed study of monolayer MoS2 and its bulk crystal in the broad spectral range (290–3300 nm). In the near- and mid-infrared ranges, both configurations appear to have no optical absorption and possess an extremely high dielectric permittivity making them favorable for lossless subwavelength photonics. In addition, the proposed approach opens a possibility to observe a previously unreported peak in the dielectric function of monolayer MoS2 induced by the use of perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) seeding promoters for MoS2 synthesis and thus enables its applications in chemical and biological sensing. Therefore, this technique as a whole offers a state-of-the-art metrological tool for next-generation TMD-based devices

    Chiral photonic super-crystals based on helical van der Waals homostructures

    Full text link
    Chirality is probably the most mysterious among all symmetry transformations. Very readily broken in biological systems, it is practically absent in naturally occurring inorganic materials and is very challenging to create artificially. Chiral optical wavefronts are often used for the identification, control and discrimination of left- and right-handed biological and other molecules. Thus, it is crucially important to create materials capable of chiral interaction with light, which would allow one to assign arbitrary chiral properties to a light field. In this paper, we utilized van der Waals technology to assemble helical homostructures with chiral properties (e. g. circular dichroism). Because of the large range of van der Waals materials available such helical homostructures can be assigned with very flexible optical properties. We demonstrate our approach by creating helical homostructures based on multilayer As2_2S3_3, which offers the most pronounced chiral properties even in thin structures due to its strong biaxial optically anisotropy. Our work showcases that the chirality of an electromagnetic system may emerge at an intermediate level between the molecular and the mesoscopic one due to the tailored arrangement of non-chiral layers of van der Waals crystals and without additional patterning

    Transition metal dichalcogenide nanospheres for high-refractive-index nanophotonics and biomedical theranostics

    Get PDF
    Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging

    High-refractive index and mechanically cleavable non-van der Waals InGaS3

    Full text link
    The growing families of two-dimensional crystals derived from naturally occurring van der Waals materials offer an unprecedented platform to investigate elusive physical phenomena and could be of use in a diverse range of devices. Of particular interest are recently reported atomic sheets of non-van der Waals materials, which could allow a better comprehension of the nature of structural bonds and increase the functionality of prospective heterostructures. Here, we study the optostructural properties of ultrathin non-van der Waals InGaS3 sheets produced by standard mechanical cleavage. Our ab initio calculation results suggest an emergence of authentically delicate out-of-plane covalent bonds within its unit cell, and, as a consequence, an artificial generation of layered structure within the material. Those yield to singular layer isolation energies of around 50 meVA-2, which is comparable with the conventional van der Waals material's monolayer isolation energies of 20 - 60 meVA-2. In addition, we provide a comprehensive analysis of the structural, vibrational, and optical properties of the materials presenting that it is a wide bandgap (2.73 eV) semiconductor with a high-refractive index (higher than 2.5) and negligible losses in the visible and infrared spectral ranges. It makes it a perfect candidate for further establishment of visible-range all-dielectric nanophotonics

    Exploring van der Waals materials with high anisotropy: geometrical and optical approaches

    Full text link
    The emergence of van der Waals (vdW) materials resulted in the discovery of their giant optical, mechanical, and electronic anisotropic properties, immediately enabling countless novel phenomena and applications. Such success inspired an intensive search for the highest possible anisotropic properties among vdW materials. Furthermore, the identification of the most promising among the huge family of vdW materials is a challenging quest requiring innovative approaches. Here, we suggest an easy-to-use method for such a survey based on the crystallographic geometrical perspective of vdW materials followed by their optical characterization. Using our approach, we found As2S3 as a highly anisotropic vdW material. It demonstrates rare giant in-plane optical anisotropy, high refractive index and transparency in the visible range, overcoming the century-long record set by rutile. Given these benefits, As2S3 opens a pathway towards next-generation nanophotonics as demonstrated by an ultrathin true zero-order quarter-waveplate that combines classical and the Fabry-Perot optical phase accumulations. Hence, our approach provides an effective and easy-to-use method to find vdW materials with the utmost anisotropic properties.Comment: 11 pages, 5 figure

    van der Waals materials for overcoming fundamental limitations in photonic integrated circuitry

    Get PDF
    With the advance of on-chip nanophotonics, there is a high demand for high-refractive-index and low-loss materials. Currently, this technology is dominated by silicon, but van der Waals (vdW) materials with a high refractive index can offer a very advanced alternative. Still, up to now, it was not clear if the optical anisotropy perpendicular to the layers might be a hindering factor for the development of vdW nanophotonics. Here, we studied WS2-based waveguides in terms of their optical properties and, particularly, in terms of possible crosstalk distance. Surprisingly, we discovered that the low refractive index in the direction perpendicular to the atomic layers improves the characteristics of such devices, mainly due to expanding the range of parameters at which single-mode propagation can be achieved. Thus, using anisotropic materials offers new opportunities and novel control knobs when designing nanophotonic devices.L.M.M. acknowledges Project PID2020-115221GB-C41, financed by MCIN/AEI/10.13039/501100011033, and the Aragon Government through Project Q-MAD. A.A.V., I.K., and D.I.Y. gratefully acknowledge the financial support from the Ministry of Science and Higher Education (Agreement No. 075-15-2021-606). I.A.K. gratefully acknowledges the financial support from the RSF (No. 22-19-00738) for first-principle calculations. K.S.N. is grateful to the Ministry of Education, Singapore (Research Centre of Excellence award to the Institute for Functional Intelligent Materials, I-FIM, project No. EDUNC-33-18-279-V12) and to the Royal Society (UK, grant number RSRP\R\190000) for support.Peer reviewe

    СПЕЦИФИКА КИНОЖАНРА ЭКШН: СЮЖЕТНЫЕ СХЕМЫ, СИСТЕМА ПЕРСОНАЖЕЙ

    No full text
    The article exposed the structural study of one of the most popular genres of modern cinema – Action movies. This genre is a specific product of the Hollywood film industry, which is characterized by adherence generated scene composition, certain decisions scheme. Most of works of domestic and foreign researchers dedicated to genre cinema and its role in popular culture, we consider the connection screen art and myth, a fairy tale. In the current study, it was observed that among the major aspects of the plot of the film genre of Action, as well as the system of characters of the genre have a palpable connection. Many plot devices and characters used in the phenomenon of fairy tales, described the outstanding Russian philologist V. Propp. This article identifies and describes the main features of this communication, and concluded that the latest action films inherit the principles of fairy tales, exposing them to mo-dern interpretation.В статье подвергается структурному исследованию один из самых популярных жанров современного кинематографа – Экшн или «боевик». Данный жанр является специфическим продуктом голливудской системы кинопроизводства, для которой характерны следование выработанной сюжетной композиции, определенным решениям, схеме. Во многих работах отечественных и зарубежных исследователей, посвященных жанровому кинематографу, его роли в массовой культуре, рассматривается связь экранного искусства и мифа, сказки. В текущем исследовании было замечено, что между основными сюжетными аспектами фильма жанра Экшн, а также системой персонажей данного жанра есть ощутимая связь. Многие сюжетные приемы и персонажи, используемые в феномене Волшебной сказки, описанном выдающимся русским филологом – фольклористом В.Я. Проппом. В статье выявляются и описываются основные признаки этой связи, а также делается вывод о том, что современные фильмы жанра Экшн наследуют принципы Волшебной сказки, подвергая их современному прочтению

    Hidden Pitfalls of Using Onion Pollen in Molecular Research

    No full text
    There is little information on the use of pollen in molecular research, despite the increased interest in genome editing by pollen-mediated transformation. This paper presents an essential toolbox of technical procedures and observations for molecular studies on onion (Allium cepa L.) pollen. PCR is a useful tool as an express method to evaluate editing results before pollination. A direct PCR protocol for pollen suspension has been adapted without needing DNA pre-extraction. We showed that the outer layer of lipids known as pollenkitt is a limiting factor for successful PCR on pollen. A simple pre-washing step of pollen suspension was able to eliminate the pollenkitt and enormously affect the PCR results. Additionally, our pollenkitt study helped us develop a simple and effective pollination method using wetted onion pollen grains. Classical manual pollination usually is conducted by intact pollen without wetting. Most existing methods of the editing system delivery into pollen are carried out in a wet medium with consequent drying before pollination, which adversely affects the viability of pollen. The optimal medium for wet pollination was 12% sucrose water solution. Our method of using wetted pollen grains for pollination might be very beneficial for pollen genetic manipulation
    corecore