6 research outputs found

    Широкополосный Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополосковый ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ для частотного Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° 60 Π“Π“Π¦

    Get PDF
    Introduction. The frequency band around 60 GHz is one of the most promising to realize new generation communication systems with high data rate due to the utilization of a wide operational frequency band that significantly exceeds traditional frequency bands below 6 GHz. High interest in the development of 60 GHz communication systems is related to the recent evolution of MMIC technology that allows creating effective components for this band and the variety of planar devices. Both are typically realized on printed circuit boards and have interfaces that are based on microstrip lines. The wideband waveguide-to-microstrip transition is required to test various active and passive planar devices with microstrip interfaces in order to provide an effective interconnection between the standard waveguide interface of measurement equipment and planar microstrip structures.Objective. The paper deals with the design of planar wideband waveguide-to-microstrip transition with low insertion loss level in the 60 GHz frequency band.Materials and methods. The main objective is achieved by analyzing of discontinuities in waveguide-tomicrostrip transition structure and their influence on transition characteristics. The transition characteristics are analyzed using full-wave electromagnetic simulation and confirmed with experimental investigation of designed wideband waveguide-to-microstrip transition samples.Results. The designed transition is based on an electromagnetic coupling through a slot aperture in a microstrip line ground plane. The transition is performed without using blind vias in its structure that provides low production cost and al-lows integrating the WR-15 rectangular waveguide in a simple manner without any modifications in the waveguide structure. Results of the electromagnetic simulation are confirmed with experimental investigations of the fabricated waveguide-to-microstrip transition samples. The designed transition provides operation in the nominal bandwidth of the WR-15 waveguide, namely, 50…75 GHz with the insertion loss level of 2 dB and with less than 0.8 dB insertion loss level at the 60 GHz frequency.Conclusion. The designed waveguide-to-microstrip transition can be considered as an effective solution for interconnection between various waveguide and microstrip millimeter-wave devices due to its wideband performance, low insertion loss level, simple integration and robustness to the manufacturing tolerances structure.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Частотный Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Π²Π±Π»ΠΈΠ·ΠΈ 60 Π“Π“Ρ† – ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивных для создания высокоскоростных систСм связи Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния Π·Π° счСт использования ΡˆΠΈΡ€ΠΎΠΊΠΎΠΉ полосы частот ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Π΅ΠΌΡ‹Ρ… сигналов, сущСствСнно ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°ΡŽΡ‰Π΅ΠΉ доступныС значСния Π΄ΠΎ 6 Π“Π“Ρ† Π² Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… частотных Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°Ρ…. АктивноС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ систСм связи Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° ΠΎΠΊΠΎΠ»ΠΎ 60 Π“Π“Ρ† подкрСпляСтся Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ΠΌ многообразия ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² ΠΈ ΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… устройств, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π½Π° Π‘Π’Π§ ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚Π°Ρ… ΠΈ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… интСрфСйс Π½Π° основС микрополосковых Π»ΠΈΠ½ΠΈΠΉ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ. Для измСрСния ΠΈ ΠΎΡ‚Π»Π°Π΄ΠΊΠΈ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² ΠΈ ΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… устройств Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈΡ… соСдинСния с Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½Ρ‹ΠΌ интСрфСйсом ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ оборудования, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополоскового ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈ исслСдованиС ΠΏΠ»Π°Π½Π°Ρ€Π½ΠΎΠ³ΠΎ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополоскового ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° для частотного Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° ΠΎΠΊΠΎΠ»ΠΎ 60 Π“Π“Ρ†, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ ΠΌΠ°Π»Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ вносимых ΠΏΠΎΡ‚Π΅Ρ€ΡŒ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Для достиТСния поставлСнной Ρ†Π΅Π»ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ влияниС нСоднородностСй Π² структурС ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π½Π° Π΅Π³ΠΎ характСристики, Π° Ρ‚Π°ΠΊΠΆΠ΅ исслСдованы ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ устранСния Ρ‚Π°ΠΊΠΈΡ… нСоднородностСй. Анализ влияния нСоднородностСй ΠΈ расчСт характСристик Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ элСктродинамичСского модСлирования ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исслСдования ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополоскового ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ основан Π½Π° элСктромагнитном взаимодСйствии Ρ‡Π΅Ρ€Π΅Π· Ρ‰Π΅Π»Π΅Π²ΡƒΡŽ Π°ΠΏΠ΅Ρ€Ρ‚ΡƒΡ€Ρƒ Π² экранС микрополосковой Π»ΠΈΠ½ΠΈΠΈ ΠΈ Π½Π΅ содСрТит Π² своСй структурС слСпых ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… отвСрстий, часто примСняСмых для ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ² ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° частот, Π½ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ изготовлСния. ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ нСпосрСдствСнного подсоСдинСния ΠΊ ΠΎΡ‚Ρ€Π΅Π·ΠΊΡƒ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π° стандартного сСчСния WR-15 Π±Π΅Π· Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΉ Π² структурС Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π°. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ модСлирования ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исслСдования полоса пропускания ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Ρ€Π°Π²Π½Π° ΠΏΠΎΠ»Π½ΠΎΠΉ полосС пропускания Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π° WR-15, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ 50...75 Π“Π“Ρ† ΠΏΠΎ ΡƒΡ€ΠΎΠ²Π½ΡŽ –2 Π΄Π‘ коэффициСнта прохоТдСния, Π° ΠΏΠΎΡ‚Π΅Ρ€ΠΈ, вносимыС Π² ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Π΅ΠΌΡ‹ΠΉ сигнал, Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°ΡŽΡ‚ 0.8 Π΄Π‘ Π½Π° частотС 60 Π“Π“Ρ†.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Широкая полоса пропускания сигнала, нСбольшиС ΠΏΠΎΡ‚Π΅Ρ€ΠΈ, ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊ нСточностям изготовлСния ΠΈ простота ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополосковый ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ для соСдинСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… микрополосковых ΠΈ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½Ρ‹Ρ… устройств ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½

    Широкополосный Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополосковый ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ Π·ΠΎΠ½Π΄ΠΎΠ²ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½

    Get PDF
    Introduction. Increased data rate in modern communication systems can be achieved by raising the operational frequency to millimeter wave range where wide transmission bands are available. In millimeter wave communication systems, the passive components of the antenna feeding system, which are based on hollow metal waveguides, and active elements of the radiofrequency circuit, which have an interface constructed on planar printed circuit boards (PCB) are interconnected using waveguide-to-microstrip transition.Aim. To design and investigate a high-performance wideband and low loss waveguide-to-microstrip transition dedicated to the 60 GHz frequency range applications that can provide effective transmission of signals between the active components of the radiofrequency circuit and the passive components of the antenna feeding systemMaterials and methods. Full-wave electromagnetic simulations in the CST Microwave Studio software were used to estimate the impact of the substrate material and metal foil on the characteristics of printed structures and to calculate the waveguide-to-microstrip transition characteristics. The results were confirmed via experimental investigation of fabricated wideband transition samples using a vector network analyzer Results. The probe-type transition consist of a PCB fixed between a standard WR-15 waveguide and a back-short with a simple structure and the same cross-section. The proposed transition also includes two through-holes on the PCB in the center of the transition area on either side of the probe. A significant part of the lossy PCB dielectric is removed from that area, thus providing wideband and low-loss performance of the transition without any additional matching elements. The design of the transition was adapted for implementation on the PCBs made of two popular dielectric materials RO4350B and RT/Duroid 5880. The results of full-wave simulation and experimental investigation of the designed waveguide to microstrip transition are presented. The transmission bandwidth for reflection coefficient S11 < –10 dB is in excess of 50…70 GHz. The measured insertion loss for a single transition is 0.4 and 0.7 dB relatively for transitions based on RO4350B and RT/Duroid 5880.Conclusion. The proposed method of insertion loss reduction in the waveguide-to-microstrip transition provides effective operation due to reduction of the dielectric substrate portion in the transition region for various high-frequency PCB materials. The designed waveguide-to -microstrip transition can be considered as an effective solution for interconnection between the waveguide and microstrip elements of the various millimeter-wave devices dedicated for the 60 GHz frequency range applications.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Для увСличСния скорости ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ… Π² соврСмСнных систСмах бСспроводной радиосвязи Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ сущСствСнноС Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ полосы частот ΠΏΠ΅Ρ€Π΅Π΄Π°Π²Π°Π΅ΠΌΡ‹Ρ… сигналов, Ρ‡Ρ‚ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π·Π° счСт увСличСния Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ частоты Π΄ΠΎ ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°. Π’ систСмах радиосвязи ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° соСдинСниС пассивных элСмСнтов Π°Π½Ρ‚Π΅Π½Π½ΠΎ-Ρ„ΠΈΠ΄Π΅Ρ€Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π°ΠΊΡ‚Π°, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° мСталличСских Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π°Ρ…, ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… элСмСнтов радиочастотного Ρ‚Ρ€Π°ΠΊΡ‚Π°, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… интСрфСйс Π½Π° основС микрополосковых Π»ΠΈΠ½ΠΈΠΉ, осущСствляСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополоскового ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° (Π’ΠœΠŸΠŸ).ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈ исслСдованиС ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ Π’ΠœΠŸΠŸ для частотного Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° 60 Π“Π“Ρ† с Π½ΠΈΠ·ΠΊΠΈΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ ΠΏΠΎΡ‚Π΅Ρ€ΡŒ для эффСктивной ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ сигналов ΠΌΠ΅ΠΆΠ΄Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ элСмСнтами радиочастотного Ρ‚Ρ€Π°ΠΊΡ‚Π° ΠΈ пассивными элСмСнтами Π°Π½Ρ‚Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π°ΠΊΡ‚Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΡ†Π΅Π½ΠΊΠ° влияния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ ΠΈ свойств мСталличСской Ρ„ΠΎΠ»ΡŒΠ³ΠΈ Π½Π° характСристики ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… структур ΠΈ расчСт характСристик Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ элСктродинамичСского модСлирования Π² систСмС Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ проСктирования CST Microwave Studio ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исслСдования ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополоскового ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π΅ Ρ†Π΅ΠΏΠ΅ΠΉ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ Π’ΠœΠŸΠŸ основан Π½Π° использовании проводящСго Π·ΠΎΠ½Π΄Π°, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° ΠΏΠ΅Ρ‡Π°Ρ‚Π½ΠΎΠΉ ΠΏΠ»Π°Ρ‚Π΅, Π·Π°ΠΊΡ€Π΅ΠΏΠ»Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ стандартным подводящим Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄ΠΎΠΌ WR15 ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ Π·Π°Π³Π»ΡƒΡˆΠΊΠΎΠΉ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ сСчСния. Для ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ ΠΏΠΎΡ‚Π΅Ρ€ΡŒ Π² ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ Π½Π° ΠΏΠ΅Ρ‡Π°Ρ‚Π½ΠΎΠΉ ΠΏΠ»Π°Ρ‚Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ сквозныС Π½Π΅ΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ отвСрстия, симмСтрично располоТСнныС Π²ΠΎΠΊΡ€ΡƒΠ³ Π·ΠΎΠ½Π΄Π° для ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΈ диэлСктрика ΠΏΠ΅Ρ‡Π°Ρ‚Π½ΠΎΠΉ ΠΏΠ»Π°Ρ‚Ρ‹ Π² Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠ°Π½Π°Π»Π΅. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исслСдования ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… ΠΌΠ°ΠΊΠ΅Ρ‚ΠΎΠ² ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΎΠ², Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚Π°Ρ…, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² RO4350B ΠΈ RT/Duroid 5880 производства ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ "Rogers", Π±Ρ‹Π»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ согласован ΠΏΠΎ ΡƒΡ€ΠΎΠ²Π½ΡŽ коэффициСнта отраТСния S11 <-10 Π΄Π‘ Π² полосС частот 50...70 Π“Π“Ρ† ΠΈ обСспСчиваСт ΠΏΠΎΡ‚Π΅Ρ€ΠΈ Π½Π° ΠΏΡ€ΠΎΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 0.4 ΠΈ 0.7 Π΄Π‘ для ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² RT/Duroid 5880 ΠΈ RO4350B соотвСтствСнно.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ сниТСния ΠΏΠΎΡ‚Π΅Ρ€ΡŒ Π² Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополосковом ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ осущСствляСтся Π·Π° счСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ влияния диэлСктричСской ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ ΠΏΡ€ΠΈ использовании Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π‘Π’Π§-ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚. Π­Ρ‚ΠΎ позволяСт Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½ΠΎ-микрополосковый ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΊΠ°ΠΊ пСрспСктивный для соСдинСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… микрополосковых ΠΈ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π½Ρ‹Ρ… устройств ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½

    Design of Wideband Waveguide-to-Microstrip Transition for 60 GHz Frequency Band

    Get PDF
    Introduction. The frequency band around 60 GHz is one of the most promising to realize new generation communication systems with high data rate due to the utilization of a wide operational frequency band that significantly exceeds traditional frequency bands below 6 GHz. High interest in the development of 60 GHz communication systems is related to the recent evolution of MMIC technology that allows creating effective components for this band and the variety of planar devices. Both are typically realized on printed circuit boards and have interfaces that are based on microstrip lines. The wideband waveguide-to-microstrip transition is required to test various active and passive planar devices with microstrip interfaces in order to provide an effective interconnection between the standard waveguide interface of measurement equipment and planar microstrip structures.Objective. The paper deals with the design of planar wideband waveguide-to-microstrip transition with low insertion loss level in the 60 GHz frequency band.Materials and methods. The main objective is achieved by analyzing of discontinuities in waveguide-tomicrostrip transition structure and their influence on transition characteristics. The transition characteristics are analyzed using full-wave electromagnetic simulation and confirmed with experimental investigation of designed wideband waveguide-to-microstrip transition samples.Results. The designed transition is based on an electromagnetic coupling through a slot aperture in a microstrip line ground plane. The transition is performed without using blind vias in its structure that provides low production cost and al-lows integrating the WR-15 rectangular waveguide in a simple manner without any modifications in the waveguide structure. Results of the electromagnetic simulation are confirmed with experimental investigations of the fabricated waveguide-to-microstrip transition samples. The designed transition provides operation in the nominal bandwidth of the WR-15 waveguide, namely, 50…75 GHz with the insertion loss level of 2 dB and with less than 0.8 dB insertion loss level at the 60 GHz frequency.Conclusion. The designed waveguide-to-microstrip transition can be considered as an effective solution for interconnection between various waveguide and microstrip millimeter-wave devices due to its wideband performance, low insertion loss level, simple integration and robustness to the manufacturing tolerances structure

    Wideband Waveguide-to-Microstrip Transition for mm-Wave Applications

    Get PDF
    Introduction. Increased data rate in modern communication systems can be achieved by raising the operational frequency to millimeter wave range where wide transmission bands are available. In millimeter wave communication systems, the passive components of the antenna feeding system, which are based on hollow metal waveguides, and active elements of the radiofrequency circuit, which have an interface constructed on planar printed circuit boards (PCB) are interconnected using waveguide-to-microstrip transition.Aim. To design and investigate a high-performance wideband and low loss waveguide-to-microstrip transition dedicated to the 60 GHz frequency range applications that can provide effective transmission of signals between the active components of the radiofrequency circuit and the passive components of the antenna feeding systemMaterials and methods. Full-wave electromagnetic simulations in the CST Microwave Studio software were used to estimate the impact of the substrate material and metal foil on the characteristics of printed structures and to calculate the waveguide-to-microstrip transition characteristics. The results were confirmed via experimental investigation of fabricated wideband transition samples using a vector network analyzer Results. The probe-type transition consist of a PCB fixed between a standard WR-15 waveguide and a back-short with a simple structure and the same cross-section. The proposed transition also includes two through-holes on the PCB in the center of the transition area on either side of the probe. A significant part of the lossy PCB dielectric is removed from that area, thus providing wideband and low-loss performance of the transition without any additional matching elements. The design of the transition was adapted for implementation on the PCBs made of two popular dielectric materials RO4350B and RT/Duroid 5880. The results of full-wave simulation and experimental investigation of the designed waveguide to microstrip transition are presented. The transmission bandwidth for reflection coefficient S11 < –10 dB is in excess of 50…70 GHz. The measured insertion loss for a single transition is 0.4 and 0.7 dB relatively for transitions based on RO4350B and RT/Duroid 5880.Conclusion. The proposed method of insertion loss reduction in the waveguide-to-microstrip transition provides effective operation due to reduction of the dielectric substrate portion in the transition region for various high-frequency PCB materials. The designed waveguide-to -microstrip transition can be considered as an effective solution for interconnection between the waveguide and microstrip elements of the various millimeter-wave devices dedicated for the 60 GHz frequency range applications
    corecore