22 research outputs found

    <i>E</i>–<i>Z</i> Photoisomerization in Proton-Modulated Photoswitchable Merocyanine Based on Benzothiazolium and o-Hydroxynaphthalene Platform

    No full text
    The potential of E–Z photoisomerization in molecular organic light-to-thermal conversion and storage in an E–styryl merocyanine system was studied in a polar acidic medium. A photoswitchable styryl merocyanine dye (E)-2-(2-(2-hydroxynaphthalen-1-yl)vinyl)-3,5-dimethylbenzo[d]thiazol-3-ium iodide was synthesized for the first time. The reversible E–Z photoisomerisation of the dye was investigated using UV-Vis spectroscopy and DFT calculations. E–Z isomerization was induced through the use of visible light irradiation (λ = 450 nm). The obtained experimental and theoretical results confirm the applicability of the Z and E isomers for proton-triggered light harvesting

    (<i>E</i>)-3-Heptyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium Iodide as Solvatochromic and Fluorogenic Dye for Spectroscopy Applications

    No full text
    The development of new selective fluorogenic probes for monitoring microbiological objects and cellular compartments may help to determine the mechanism of pathogenesis of new pathogens in living cells. The easy and reliable synthetic strategy for the direct preparation of chemically pure styryl dye (E)-3-heptyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium iodide is described. The photophysical properties in different solvents and in water medium neat and in the presence of the dsDNA and RNA of the dye is demonstrated and compared with that of the known structure analogue. The cellular uptake and the ability to bind cell organelles is determined. The introduction of a heptyl substituent attached to the quaternary nitrogen atom of the benzothiazole ring leads to an improvement in the photophysical properties of the dye

    Structure-Fluorescence Contrast Relationship in Cyanine DNA Intercalators: Toward Rational Dye Design

    No full text
    The fluorescence enhancement mechanisms of a series of DNA stains of the oxazole yellow (YO) family have been investigated in detail using steady-state and ultrafast time-resolved fluorescence spectroscopy. The strong increase in the fluorescence quantum yield of these dyes upon DNA binding is shown to originate from the inhibition of two distinct processes: 1) isomerisation through large-amplitude motion that non-radiatively deactivates the excited state within a few picoseconds and 2) formation of weakly emitting H-dimers. As the H-dimers are not totally non-fluorescent, their formation is less efficient than isomerisation as a fluorescent contrast mechanism. The propensity of the dyes to form H-dimers and thus to reduce their fluorescence contrast upon DNA binding is shown to depend on several of their structural parameters, such as their monomeric (YO) or homodimeric (YOYO) nature, their substitution and their electric charge. Moreover, these parameters also have a substantial influence on the affinity of the dyes for DNA and on the ensuing sensitivity for DNA detection. The results give new insight into the development and optimisation of fluorescent DNA probes with the highest contrast

    Non-cytotoxic photostable monomethine cyanine platforms:Combined paradigm of nucleic acid staining and in vivo imaging

    No full text
    Cyanine based chemosensing platforms have successfully been employed over the past couple of decades in various fields of biomolecular sciences. Still a substantial number of recent advances and improvements on this class of compounds are reported in the art. This paper presents our latest work on the improved synthetic approach, study on photophysical properties, and biosensing applicability of monomethine cyanine dyes. The series of mono-, di- and tricationic dyes showed up to 5-fold enhanced resistance against photobleaching compared to the commercially available Thiazole Orange (TO). The title compounds were studied as potential molecular probes for the detection of deoxyribonucleic acid, demonstrating their capacity as excellent fluorescent labeling agents. Depending on the dye chemical structure, current Cl-TO compounds exhibit up to 834-fold enhanced fluorescence emission and form stable complexes with Calf Thymus-DNA. The calculated binding constants were found to be higher than several conventional fluorogenic dyes for nucleic acid detection. All studied derivatives appeared as less cytotoxic than the Thiazole Orange. IC50 concentrations in human fibro-blasts MRCS cell line were calculated up to 50 mu M for the synthesized Cl-TO dyes, and 0.5 mu M for the parental Thiazole Orange. Two of the dyes were found very competent in post-electrophoretic visualization of DNA. As demonstrated by the agarose gel electrophoresis, the staining efficiency and detection limits of the dyes were comparable to the widely used Ethidium Bromide. The tricationic dye revealed great potential for cell cycle analysis in G1, S and G2 phases. The chlorinated TO derivatives readily stain human cells in vivo, while they can effectively be applied for eukaryotic and microbial cell staining

    Ultrasonic Synthesis and Preliminary Evaluation of Anticoronaviral Activity of 6,7-Dimethoxy-4-(4-(4-methoxyphenyl)piperazin-1-yl)-1-methylquinolin-1-ium Iodide

    No full text
    Quinoline scaffold is one of the most intensively utilized pharmacophores in drug design because of the variety of activities demonstrated by different quinoline-based therapeutics or drug-candidates. Herein, we describe an environmentally tolerant two-step procedure as a convenient synthetic approach to novel chloroquine and hydroxychloroquine analogues. The structures of the newly synthesized compounds are estimated by 1H NMR, 13C NMR, LC-MS spectrometry and IR spectroscopy

    Ultrasonic Synthesis and Preliminary Evaluation of Anticoronaviral Activity of 6,7-Dimethoxy-4-(4-(4-methoxyphenyl)piperazin-1-yl)-1-methylquinolin-1-ium Iodide

    No full text
    Quinoline scaffold is one of the most intensively utilized pharmacophores in drug design because of the variety of activities demonstrated by different quinoline-based therapeutics or drug-candidates. Herein, we describe an environmentally tolerant two-step procedure as a convenient synthetic approach to novel chloroquine and hydroxychloroquine analogues. The structures of the newly synthesized compounds are estimated by 1H NMR, 13C NMR, LC-MS spectrometry and IR spectroscopy

    Non-cytotoxic photostable monomethine cyanine platforms: Combined paradigm of nucleic acid staining and in vivo imaging

    No full text
    Cyanine based chemosensing platforms have successfully been employed over the past couple of decades in various fields of biomolecular sciences. Still a substantial number of recent advances and improvements on this class of compounds are reported in the art. This paper presents our latest work on the improved synthetic approach, study on photophysical properties, and biosensing applicability of monomethine cyanine dyes. The series of mono-, di- and tricationic dyes showed up to 5-fold enhanced resistance against photobleaching compared to the commercially available Thiazole Orange (TO). The title compounds were studied as potential molecular probes for the detection of deoxyribonucleic acid, demonstrating their capacity as excellent fluorescent labeling agents. Depending on the dye chemical structure, current Cl-TO compounds exhibit up to 834-fold enhanced fluorescence emission and form stable complexes with Calf Thymus-DNA. The calculated binding constants were found to be higher than several conventional fluorogenic dyes for nucleic acid detection. All studied derivatives appeared as less cytotoxic than the Thiazole Orange. IC50 concentrations in human fibro-blasts MRCS cell line were calculated up to 50 mu M for the synthesized Cl-TO dyes, and 0.5 mu M for the parental Thiazole Orange. Two of the dyes were found very competent in post-electrophoretic visualization of DNA. As demonstrated by the agarose gel electrophoresis, the staining efficiency and detection limits of the dyes were comparable to the widely used Ethidium Bromide. The tricationic dye revealed great potential for cell cycle analysis in G1, S and G2 phases. The chlorinated TO derivatives readily stain human cells in vivo, while they can effectively be applied for eukaryotic and microbial cell staining

    Mechanical and Tribological Properties of Polytetrafluoroethylene Composites Modified by Carbon Fibers and Zeolite

    No full text
    Currently, lightweight and high-strength polymer composites can provide weight savings in the automotive and process equipment industries by replacing metal parts. Polytetrafluoroethylene and polymer composites based on it are used in various tribological applications due to their excellent antifriction properties and thermal stability. This article examines the effect of combined fillers (carbon fibers and zeolite) on the mechanical, tribological properties, and structure of polytetrafluoroethylene. It is shown that the introduction of combined fillers into polytetrafluoroethylene retains the tensile strength and elongation at break at a content of 1–5 wt.% of carbon fibers, the compressive stress increased by 53%, and the yield stress increased by 45% relative to the initial polymer. The wear resistance of polymer composites increased 810-fold compared to the initial polytetrafluoroethylene while maintaining a low coefficient of friction. The structural features of polymer composites are characterized by X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy

    Ultrafast Excited-State Dynamics of DNA Fluorescent Intercalators: New Insight into the Fluorescence Enhancement Mechanism

    No full text
    The excited-state dynamics of the DNA bisintercalator YOYO-1 and of two derivatives has been investigated using ultrafast fluorescence up-conversion and time-correlated single photon counting. The free dyes in water exist in two forms: nonaggregated dyes and intramolecular H-type aggregates, the latter form being only very weakly fluorescent because of excitonic interaction. The excited-state dynamics of the nonaggregated dyes is dominated by a nonradiative decay with a time constant of the order of 5 ps associated with large amplitude motion around the monomethine bridge of the cyanine chromophores. The strong fluorescence enhancement observed upon binding of the dyes to DNA is due to both the inhibition of this nonradiative deactivation of the nonaggregated dyes and the dissociation of the aggregates and thus to the disruption of the excitonic interaction. However, the interaction between the two chromophoric moieties in DNA is sufficient to enable ultrafast hopping of the excitation energy as revealed by the decay of the fluorescence anisotropy. Finally, these dyes act as solvation probes since a dynamic fluorescence Stokes shift was observed both in bulk water and in DNA. Very similar time scales were found in bulk water and in DNA
    corecore