35 research outputs found

    Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells

    Get PDF
    The scaffolds made of polycaprolactone (PCL) are actively employed in different areas of biology and medicine, especially in tissue engineering. However, the usage of unmodified PCL is significantly restricted by the hydrophobicity of its surface, due to the fact that its inert surface hinders the adhesion of cells and the cell interactions on PCL surface. In this work, the surface of PCL nanofibers is modified by Ar/CO2/C2H4 plasma depositing active COOH groups in the amount of 0.57 at % that were later used for the immobilization of platelet-rich plasma (PRP). The modification of PCL nanofibers significantly enhances the viability and proliferation (by hundred times) of human mesenchymal stem cells, and decreases apoptotic cell death to a normal level. According to X-ray photoelectron spectroscopy (XPS), after immobilization of PRP, up to 10.7 at % of nitrogen was incorporated into the nanofibers surface confirming the grafting of proteins. Active proliferation and sustaining the cell viability on nanofibers with immobilized PRP led to an average number of cells of 258+-12.9 and 364+-34.5 for nanofibers with ionic and covalent bonding of PRP, respectively. Hence, our new method for the modification of PCL nanofibers with PRP opens new possibilities for its application in tissue engineering

    XPS and AFM Investigations of Ti-Al-N Coatings Fabricated Using DC Magnetron Sputtering at Various Nitrogen Flow Rates and Deposition Temperatures

    No full text
    Ti-Al-N coatings were deposited by direct current magnetron sputtering (DCMS) onto IN 718 at different nitrogen flow rates and deposition temperatures. The coatings’ properties were characterized using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) as well as nanoindentation. It was found that higher deposition temperature leads to higher surface roughness and nitrogen flux influences the shape of grains. According to XPS, the bonding structure of all coatings exhibited the (Ti,Al)N phase. Mechanical properties depend on the Al content within the films. The coating with the best mechanical properties (deposited at 500 °C and 20 standard cubic centimeters per minute (sccm)) was further deposited onto tungsten carbide (WC) cutting tools for cylindrical turning experiments. A quasi-constant flank wear was observed until a machining volume of 23,500 mm3

    Chemical and Morphological Characterization of Magnetron Sputtered at Different Bias Voltages Cr-Al-C Coatings

    No full text
    MAX phases (M = transition metal, A = A-group element, and X = C/N) are of special interest because they possess a unique combination of the advantages of both metals and ceramics. Most attention is attracted to the ternary carbide Cr2AlC because of its excellent high-temperature oxidation, as well as hot corrosion resistance. Despite lots of publications, up to now the influence of bias voltage on the chemical bonding structure, surface morphology, and mechanical properties of the film is still not well understood. In the current study, Cr-Al-C films were deposited on silicon wafers (100) and Inconel 718 super alloy by dc magnetron sputtering with different substrate bias voltages and investigated using Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and nanoindentation. Transmission Electron Microscopy (TEM) was used to analyze the correlation between the growth of the films and the coating microstructure. The XPS results confirm the presence of Cr2AlC MAX phase due to a negative shift of 0.6–0.9 eV of the Al2p to pure aluminum carbide peak. The XRD results reveal the presence of Cr2AlC MAX Phase and carbide phases, as well as intermetallic AlCr2. The film thickness decreases from 8.95 to 6.98 µm with increasing bias voltage. The coatings deposited at 90 V exhibit the lowest roughness (33 nm) and granular size (76 nm) combined with the highest hardness (15.9 GPa). The ratio of Al carbide to carbide-like carbon state changes from 0.12 to 0.22 and correlates with the mechanical properties of the coatings. TEM confirms the columnar structure, with a nanocrystalline substructure, of the films

    Oxidation Behavior of Zr–1Nb Corroded in Air at 400 °C after Plasma Immersion Titanium Implantation

    No full text
    In this paper, the influence of plasma immersion titanium implantation into the zirconium alloy Zr-1Nb on the oxidation behavior at 400 °C for 5, 24, 72, and 240 h in air under normal atmospheric pressure (101.3 kPa) was shown. The influence of implantation on the protective properties of the modified layer was shown. The valence of the oxides before and after implantation was analyzed by means of X-ray photoelectron spectroscopy (XPS). Grazing incidence X-ray diffraction (GIXRD) was carried out to examine the phase composition after titanium ion implantation and oxidation. Differential scanning calorimetry (DSC) revealed that titanium implantation exhibited effects of stabilizing the β phase. The formation of the t-ZrO2 and m-ZrO2 was observed during the oxidation of the as-received and modified Zr-1Nb. The measurement of weight gain showed an improvement in oxidation resistance of Ti implanted Zr-1Nb at the oxidation up to 24 h when compared with that of the as-received Zr-1Nb. However, at longer oxidation cycle the oxidation rate of Ti-implanted zirconium alloy is the same with the as-received alloy, which attributed to the layer thickness. Nevertheless, the corrosion of the Ti-implanted alloy is more uniform, while a local corrosion and cracks was detected on the surface of the as-received alloy

    Auswirkung des Nitrierens auf das tribologische Verhalten von CrN-, AlTiN- und CrN/AlTiN-beschichteten DIN 1.2367 Warmarbeitsstählen

    No full text
    In this study, heat-treated and multisurface engineered DIN 1.2367 tool steel was subjected to room and elevated temperature wear tests, and the effect of nitriding on its tribological behavior was investigated. CrN, AlTiN, and CrN/AlTiN coatings with a total thickness of 2 µm were obtained by arc cathodic physical vapor deposition on conventional heat-treated and gas-nitrided steels. The white layer formed during nitriding was removed, and a diffusion layer (100 µm) was achieved in the cross section of the steel having a tempered martensitic matrix. The highest surface hardness was attained with an integral coating (CrN/AlTiN), and surface hardness increased even more after nitriding due to the formation of a multicomponent ceramic layer on top of the diffusion layer. The room temperature wear tests performed against an alumina counterpart revealed that (i) CrN/AlTiN-coated steel had the highest friction coefficient of 0.26, which further increased to 0.33 by nitriding due to the increase in shear strength, and that (ii) with increasing surface hardness, the specific wear rates (W) of the heat-treated and coated steels could be ranked as follows: WCrN/AlTiN < WAlTiN < WCrN. The wear rates decreased when nitriding was carried out prior to coating. In order to simulate the aluminum extrusion conditions, hot wear behavior of the surfaces against AA6080 alloy at 450 °C was investigated. The hot wear tests revealed that (i) high friction coefficients were reached due to the adhesive characteristic of aluminum to the surfaces, (ii) the nitrided and CrN/AlTiN-coated sample exhibited the lowest wear rate among all studied surfaces, and (iii) the film damage on the worn surfaces mostly occurred in the form of droplet delamination.In dieser Studie wurde wärmebehandelter und mehrschichtig bearbeiteter Werkzeugstahl DIN 1.2367 bei Raum- und erhöhter Temperatur Verschleißtests sowie der Einfluss des Nitrierens auf sein tribologisches Verhalten untersucht. Auf konventionell wärmebehandelten und gasnitrierten Stählen wurden CrN-, AlTiN- und CrN/AlTiN-Schichten mit einer Gesamtdicke von 2 µm durch kathodische Gasphasenabscheidung erzeugt. Die beim Nitrieren gebildete weiße Schicht wurde entfernt, und es wurde eine Diffusionsschicht (100 µm) im Querschnitt des Stahls mit angelassener martensitischer Matrix erzeugt. Die höchste Oberflächenhärte wurde mit einer integralen Beschichtung (CrN/AlTiN) erreicht, die nach dem Nitrieren aufgrund der Bildung einer Mehrkomponenten-Keramikschicht auf der Diffusionsschicht noch weiter anstieg. Die bei Raumtemperatur durchgeführten Verschleißtests mit einem Aluminiumoxid-Gegenstück ergaben, dass (i) CrN/AlTiN-beschichteter Stahl den höchsten Reibungskoeffizienten von 0,26 aufwies, der sich nach dem Nitrieren aufgrund der erhöhten Scherfestigkeit auf 0,33 erhöhte, (ii) mit zunehmender Oberflächenhärte die spezifischen Verschleißraten (W) der wärmebehandelten und beschichteten Stähle wie folgt eingestuft werden konnten: WCrN/AlTiN<WAlTiN<WCrN. Die Verschleißraten sanken, wenn dasNitrieren vor dem Beschichten durchgeführt wurde. Um die Bedingungenbeim Aluminiumstrangpressen zu simulieren, wurde das Heißverschleißverhalten der Oberflächen gegenüber der Legierung AA6080 bei 450 °C untersucht. Die Heißverschleißtests ergaben, dass (i) aufgrund der adhäsiven Eigenschaft des Aluminiums an den Oberflächen hohe Reibungskoeffizienten erreicht wurden, (ii) die nitrierte und CrN/AlTiN-beschichtete Probe die niedrigste Verschleißrate aller untersuchten Oberflächen aufwies und (iii) die Schichtschädigung an den verschlissenen Oberflächen meist in Form von Tröpfchenablösung auftrat

    Effect of Hydrogen Exposure on Mechanical and Tribological Behavior of CrxN Coatings Deposited at Different Pressures on IN718

    No full text
    In the current study, the properties of the CrxN coatings deposited on the Inconel 718 superalloy using direct current reactive magnetron sputtering are investigated. The influence of working pressure on the microstructure, mechanical, and tribological properties of the CrxN coatings before and after high-temperature hydrogen exposure is studied. The cross-sectional scanning electron micrographs indicate the columnar structure of the coatings, which changes from dense and compact columns to large columns with increasing working pressure. The Cr/N ratio increases from 1.4 to 1.9 with increasing working pressure from 300 to 900 mPa, respectively. X-ray diffraction analysis reveals a change from mixed hcp-Cr2N and fcc-CrN structure to approximately stoichiometric Cr2N phase. After gas-phase hydrogenation, the coating deposited at 300 mPa exhibits the lowest hydrogen absorption at 600 °C of all investigated coatings. The results indicate that the dense mixed cubic and hexagonal structure is preferential for hydrogen permeation resistance due to the presence of cubic phase with higher packing density in comparison to the hexagonal structure. After hydrogenation, no changes in phase composition were observed; however, a small amount of hydrogen is accumulated in the coatings. An increase of coating hardness and elastic modulus was observed after hydrogen exposure. Tribological tests reveal that hydrogenation leads to a decrease of the friction coefficient up to 20%–30%. The best value of 0.25 was reached for hydrogen exposed CrxN coating deposited at 300 mPa

    Sputtering Power Effects on Growth and Mechanical Properties of Cr2AlC MAX Phase Coatings

    No full text
    Coating growth and mechanical properties of nanolamellar Cr2AlC coatings at various sputtering power were investigated in the present study. Cr2AlC coating was deposited on the IN 718 superalloy and (100) Si wafers by DC magnetron sputtering at different sputtering powers. The structure and properties were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation. It was found that coatings had columnar structure with nanocrystalline substructure. Deposition rate increased with the sputtering power. XRD results showed the presence of the Cr2AlC MAX phase, intermetallic AlCr2 and Cr7C3 carbide phases, along with the change in preferential coating growth orientation. TEM observations confirmed the occurrence of these phases, and the SAED patterns demonstrated significant texture of the coatings. Hardness values were measured in the range between 11–14 GPa, showing a slight increase with the sputtering power

    Sputtering Power Effects on Growth and Mechanical Properties of Cr2AlC MAX Phase Coatings

    Get PDF
    Coating growth and mechanical properties of nanolamellar Cr2AlC coatings at various sputtering power were investigated in the present study. Cr2AlC coating was deposited on the IN 718 superalloy and (100) Si wafers by DC magnetron sputtering at different sputtering powers. The structure and properties were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation. It was found that coatings had columnar structure with nanocrystalline substructure. Deposition rate increased with the sputtering power. XRD results showed the presence of the Cr2AlC MAX phase, intermetallic AlCr2 and Cr7C3 carbide phases, along with the change in preferential coating growth orientation. TEM observations confirmed the occurrence of these phases, and the SAED patterns demonstrated significant texture of the coatings. Hardness values were measured in the range between 11–14 GPa, showing a slight increase with the sputtering power

    Hydrogen Permeation, and Mechanical and Tribological Behavior, of CrNx Coatings Deposited at Various Bias Voltages on IN718 by Direct Current Reactive Sputtering

    No full text
    In the current work, the microstructure, hydrogen permeability, and properties of chromium nitride (CrNx) thin films deposited on the Inconel 718 superalloy using direct current reactive sputtering are investigated. The influence of the substrate bias voltage on the crystal structure, mechanical, and tribological properties before and after hydrogen exposure was studied. It was found that increasing the substrate bias voltage leads to densification of the coating. X-ray diffraction (XRD) results reveal a change from mixed fcc-CrN + hcp-Cr2N to the approximately stoichiometric hcp-Cr2N phase with increasing substrate bias confirmed by wavelength-dispersive X-ray spectroscopy (WDS). The texture coefficients of (113), (110), and (111) planes vary significantly with increasing substrate bias voltage. The hydrogen permeability was measured by gas-phase hydrogenation. The CrN coating deposited at 60 V with mixed c-CrN and (113) textured hcp-Cr2N phases exhibits the lowest hydrogen absorption at 873 K. It is suggested that the crystal orientation is only one parameter influencing the permeation resistance of the CrNx coating together with the film structure, the presence of mixing phases, and the packing density of the structure. After hydrogenation, the hardness increased for all coatings, which could be related to the formation of a Cr2O3 oxide film on the surface, as well as the defect formation after hydrogen loading. Tribological tests reveal that hydrogenation leads to a decrease of the friction coefficient by up to 40%. The lowest value of 0.25 ± 0.02 was reached for the CrNx coating deposited at 60 V after hydrogenation
    corecore