9 research outputs found

    Data for increase of Lymantria dispar male survival after topical application of single-stranded RING domain fragment of IAP-3 gene of its nuclear polyhedrosis virus

    Get PDF
    This data article is related to the research article entitled “The RING for gypsy moth control: topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide” [1]. This article reports on significantly higher survival of gypsy moth Lymantria dispar male individuals in response to topical application of single-stranded DNA, based on RING (really interesting new gene) domain fragment of LdMNPV (L. dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene and acted as DNA insecticide

    Molecular alliance of Lymantria dispar multiple nucleopolyhedrovirus and a short unmodified antisense oligonucleotide of its anti-apoptotic IAP-3 gene: A novel approach for gypsy moth control

    Get PDF
    Baculovirus IAP (inhibitor-of-apoptosis) genes originated by capture of host genes. Unmodified short antisense DNA oligonucleotides (oligoDNAs) from baculovirus IAP genes can down-regulate specific gene expression profiles in both baculovirus-free and baculovirus-infected insects. In this study, gypsy moth (Lymantria dispar) larvae infected with multiple nucleopolyhedrovirus (LdMNPV), and LdMNPV-free larvae, were treated with oligoDNA antisense to the RING (really interesting new gene) domain of the LdMNPV IAP-3 gene. The results with respect to insect mortality, biomass accumulation, histological studies, RT-PCR, and analysis of DNA apoptotic fragmentation suggest that oligoRING induced increased apoptotic processes in both LdMNPV-free and LdMNPV-infected insect cells, but were more pronounced in the latter. These data open up possibilities for promising new routes of insect pest control using antisense phosphodiester DNA oligonucleotides

    Molecular Alliance of Lymantria dispar Multiple Nucleopolyhedrovirus and a Short Unmodified Antisense Oligonucleotide of Its Anti-Apoptotic IAP-3 Gene: A Novel Approach for Gypsy Moth Control

    Get PDF
    Baculovirus IAP (inhibitor-of-apoptosis) genes originated by capture of host genes. Unmodified short antisense DNA oligonucleotides (oligoDNAs) from baculovirus IAP genes can down-regulate specific gene expression profiles in both baculovirus-free and baculovirus-infected insects. In this study, gypsy moth (Lymantria dispar) larvae infected with multiple nucleopolyhedrovirus (LdMNPV), and LdMNPV-free larvae, were treated with oligoDNA antisense to the RING (really interesting new gene) domain of the LdMNPV IAP-3 gene. The results with respect to insect mortality, biomass accumulation, histological studies, RT-PCR, and analysis of DNA apoptotic fragmentation suggest that oligoRING induced increased apoptotic processes in both LdMNPV-free and LdMNPV-infected insect cells, but were more pronounced in the latter. These data open up possibilities for promising new routes of insect pest control using antisense phosphodiester DNA oligonucleotides

    Biological control of gypsy moth (Lymantria dispar): an RNAi-based approach and a case for DNA insecticides

    No full text
    The discovery of the post-transcriptional gene silencing (PTGS) mechanism, widely known as RNAi (RNA interference),has contributed towards the elucidation of the cellular machinery involved in the response against viral infections based on gene silencing, and in developmental regulation of translational suppression. The application of RNAi in insect pest management (IPM),and gene functional analysis, has been of enormous importance. Unfortunately, as RNAi has many times proven to be difficult to examine in Lepidoptera, focus has shifted to other potential post-genomic options in IPM. Special attention has afforded to novel DNA insecticides based on preparations of short single-stranded fragments of baculovirus anti-apoptosis genes, which represent a safe and relatively rapid alternative approach for IPM. This paper focuses on the draw backs and advantages of DNA insecticides used in gypsy moth control and based on RNAi

    The need for the application of modern chemical insecticides and environmental consequences of their use: a mini review

    No full text
    Currently, the use of insecticides is an acute problem. Due to rapid population growth, the primary task is to increase food production. Beyond abiotic factors (drought, soil salinity, etc.) that reduce crop yields, farmers face problems with insect pests that can decrease crop productivity up to 60%. Also, insects are carriers of severe viral and protozoan human diseases. The need for application of insecticides is not questioned but many of them cause resistance of insect pests to them. This, in turn, leads to the necessity to invent new insecticides that are safe and more effective for long-term use. Preparations based on conservative parts of nucleic acids, particularly contact DNA insecticides, could be used to solve insecticide resistance problem as control agents which are well-tailored to target insect pests. This mini review is devoted to these issues

    A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey

    No full text
    Antisense oligonucleotides (ASO), short single-stranded polymers based on DNA or RNA chemistries and synthesized in vitro, regulate gene expression by binding in a sequence-specific manner to an RNA target. The functional activity and selectivity in the action of ASOs largely depends on the combination of nitrogenous bases in a target sequence. This simple and natural property of nucleic acids provides an attractive route by which scientists can create different ASO-based techniques. Over the last 50 years, planned and realized applications in the field of antisense and nucleic acid nanotechnologies have produced astonishing results and posed new challenges for further developments, exemplifying the essence of the post-genomic era. Today the majority of ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake. This review critically analyzes some successful cases using the antisense approach in medicine to address severe diseases, such as Duchenne muscular dystrophy and spinal muscular atrophy, and suggests some prospective directions for future research. We also examine in detail the elaboration of unmodified insect-specific DNA insecticides and RNA preparations in the areas of agriculture and forestry, a relatively new branch of ASO that allows circumvention of the use of non-selective chemical insecticides. When considering the variety of successful ASO modifications with an efficient signal-to-noise ratio of action, coupled with the affordability of in vitro oligonucleotide synthesis and post-synthesis procedures, we predict that the next half-century will produce a fruitful yield of tools created from effective ASO-based end products
    corecore