3,782 research outputs found

    The 1/N-expansion, quantum-classical correspondence and nonclassical states generation in dissipative higher-order anharmonic oscillators

    Full text link
    We develop a method for the determination of thecdynamics of dissipative quantum systems in the limit of large number of quanta N, based on the 1/N-expansion of Heidmann et al. [ Opt. Commun. 54, 189 (1985) ] and the quantum-classical correspondence. Using this method, we find analytically the dynamics of nonclassical states generation in the higher-order anharmonic dissipative oscillators for an arbitrary temperature of a reservoir. We show that the quantum correction to the classical motion increases with time quadratically up to some maximal value, which is dependent on the degree of nonlinearity and a damping constant, and then it decreases. Similarities and differences with the corresponding behavior of the quantum corrections to the classical motion in the Hamiltonian chaotic systems are discussed. We also compare our results obtained for some limiting cases with the results obtained by using other semiclassical tools and discuss the conditions for validity of our approach.Comment: 15 pages, RevTEX (EPSF-style), 3 figs. Replaced with final version (stylistic corrections

    Equilibrium configurations of two charged masses in General Relativity

    Full text link
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.

    D-branes in the WZW model

    Get PDF
    It is stated in the literature that D-branes in the WZW-model associated with the gluing condition J = - \bar{J} along the boundary correspond to branes filling out the whole group volume. We show instead that the end-points of open strings are rather bound to stay on `integer' conjugacy classes. In the case of SU(2) level k WZW model we obtain k-1 two dimensional Euclidean D-branes and two D particles sitting at the points e and -e.Comment: 2 pages, LaTe

    New Test of Supernova Electron Neutrino Emission using Sudbury Neutrino Observatory Sensitivity to the Diffuse Supernova Neutrino Background

    Full text link
    Supernovae are rare nearby, but they are not rare in the Universe, and all past core-collapse supernovae contributed to the Diffuse Supernova Neutrino Background (DSNB), for which the near-term detection prospects are very good. The Super-Kamiokande limit on the DSNB electron {\it antineutrino} flux, ϕ(Eν>19.3MeV)<1.2\phi(E_\nu > 19.3 {\rm MeV}) < 1.2 cm2^{-2} s1^{-1}, is just above the range of recent theoretical predictions based on the measured star formation rate history. We show that the Sudbury Neutrino Observatory should be able to test the corresponding DSNB electron {\it neutrino} flux with a sensitivity as low as ϕ(22.5<Eν<32.5MeV)6\phi(22.5 < E_\nu < 32.5 {\rm MeV}) \simeq 6 cm2^{-2} s1^{-1}, improving the existing Mont Blanc limit by about three orders of magnitude. While conventional supernova models predict comparable electron neutrino and antineutrino fluxes, it is often considered that the first (and forward-directed) SN 1987A event in the Kamiokande-II detector should be attributed to electron-neutrino scattering with an electron, which would require a substantially enhanced electron neutrino flux. We show that with the required enhancements in either the burst or thermal phase νe\nu_e fluxes, the DSNB electron neutrino flux would generally be detectable in the Sudbury Neutrino Observatory. A direct experimental test could then resolve one of the enduring mysteries of SN 1987A: whether the first Kamiokande-II event reveals a serious misunderstanding of supernova physics, or was simply an unlikely statistical fluctuation. Thus the electron neutrino sensitivity of the Sudbury Neutrino Observatory is an important complement to the electron antineutrino sensitivity of Super-Kamiokande in the quest to understand the DSNB.Comment: 10 pages, 3 figure

    Decomposable representations and Lagrangian submanifolds of moduli spaces associated to surface groups

    Full text link
    In this paper, we construct a Lagrangian submanifold of the moduli space associated to the fundamental group of a punctured Riemann surface (the space of representations of this fundamental group into a compact connected Lie group). This Lagrangian submanifold is obtained as the fixed-point set of an anti-symplectic involution defined on the moduli space. The notion of decomposable representation provides a geometric interpretation of this Lagrangian submanifold

    On interrelations between Sibgatullin's and Alekseev's approaches to the construction of exact solutions of the Einstein-Maxwell equations

    Full text link
    The integral equations involved in Alekseev's "monodromy transform" technique are shown to be simple combinations of Sibgatullin's integral equations and normalizing conditions. An additional complex conjugation introduced by Alekseev in the integrands makes his scheme mathematically inconsistent; besides, in the electrovac case all Alekseev's principal value integrals contain an intrinsic error which has never been identified before. We also explain how operates a non-trivial double-step algorithm devised by Alekseev for rewriting, by purely algebraic manipulations and in a different (more complicated) parameter set, any particular specialization of the known analytically extended N-soliton electrovac solution obtained in 1995 with the aid of Sibgatullin's method.Comment: 7 pages, no figures, section II extende

    Probes of Lorentz Violation in Neutrino Propagation

    Get PDF
    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1 +- (E/M_\nuQG1)] or [1 +- (E/M_\nu QG2}^2], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB and Baksan experiments, we set the limits M_\nuQG1 > 2.7(2.5)x10^10 GeV for subluminal (superluminal) propagation, respectively, and M_\nuQG2 >4.6(4.1)x10^4 GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to M_\nuQG1 > 2(4)x10^11 GeV for subluminal (superluminal) propagation, respectively, and M_\nuQG2 > 2(4)x10^5 GeV. With the current CNGS extraction spill length of 10.5 micro seconds and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach M_\nuQG1 ~ 7x10^5 GeV (M_\nuQG2 ~ 8x10^3 GeV) after 5 years of nominal running. If the time structure of the SPS RF bunches within the extracted CNGS spills could be exploited, these figures would be significantly improved to M_\nuQG1 ~ 5x10^7 GeV (M_\nuQG2 ~ 4x10^4 GeV). These results can be improved further if similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to M_\nuQG1 ~ 4x10^8 GeV and M_\nuQG2 ~ 7x10^5 GeV.Comment: 33 pages, 22 figures, version accepted for publication in Physical Review
    corecore