4,318 research outputs found

    Solving the characteristic initial value problem for colliding plane gravitational and electromagnetic waves

    Get PDF
    A method is presented for solving the characteristic initial value problem for the collision and subsequent nonlinear interaction of plane gravitational or gravitational and electromagnetic waves in a Minkowski background. This method generalizes the monodromy transform approach to fields with nonanalytic behaviour on the characteristics inherent to waves with distinct wave fronts. The crux of the method is in a reformulation of the main nonlinear symmetry reduced field equations as linear integral equations whose solutions are determined by generalized (``dynamical'') monodromy data which evolve from data specified on the initial characteristics (the wavefronts).Comment: 4 pages, RevTe

    A note on a canonical dynamical r-matrix

    Full text link
    It is well known that a classical dynamical rr-matrix can be associated with every finite-dimensional self-dual Lie algebra \G by the definition R(ω):=f(adω)R(\omega):= f(\mathrm{ad} \omega), where \omega\in \G and ff is the holomorphic function given by f(z)=1/2cothz21zf(z)={1/2}\coth \frac{z}{2}-\frac{1}{z} for z\in \C\setminus 2\pi i \Z^*. We present a new, direct proof of the statement that this canonical rr-matrix satisfies the modified classical dynamical Yang-Baxter equation on \G.Comment: 17 pages, LaTeX2

    Decomposable representations and Lagrangian submanifolds of moduli spaces associated to surface groups

    Full text link
    In this paper, we construct a Lagrangian submanifold of the moduli space associated to the fundamental group of a punctured Riemann surface (the space of representations of this fundamental group into a compact connected Lie group). This Lagrangian submanifold is obtained as the fixed-point set of an anti-symplectic involution defined on the moduli space. The notion of decomposable representation provides a geometric interpretation of this Lagrangian submanifold

    Realistic theory of electromagnetically-induced transparency and slow light in a hot vapor of atoms undergoing collisions

    Full text link
    We present a realistic theoretical treatment of a three-level Λ\Lambda system in a hot atomic vapor interacting with a coupling and a probe field of arbitrary strengths, leading to electromagnetically-induced transparency and slow light under the two-photon resonance condition. We take into account all the relevant decoherence processes including col5Blisions. Velocity-changing collisions (VCCs) are modeled in the strong collision limit effectively, which helps in achieving optical pumping by the coupling beam across the entire Doppler profile. The steady-state expressions for the atomic density-matrix elements are numerically evaluated to yield the experimentally measured response characteristics. The predictions, taking into account a dynamic rate of influx of atoms in the two lower levels of the Λ\Lambda, are in excellent agreement with the reported experimental results for 4^4He*. The role played by the VCC parameter is seen to be distinct from that by the transit time or Raman coherence decay rate

    D-branes and orientifolds of SO(3)

    Get PDF
    We study branes and orientifolds on the group manifold of SO(3). We consider particularly the case of the equatorial branes, which are projective planes. We show that a Dirac-Born-Infeld action can be defined on them, although they are not orientable. We find that there are two orientifold projections with the same spacetime action, which differ by their action on equatorial branes.Comment: 11 pages, no figure, uses JHEP3.cls. V2 : minor correction
    corecore