12,711 research outputs found

    Chasing 'Slow Light'

    Full text link
    A critical review of experimental studies of the so-called 'slow light' arising due to anomalously high steepness of the refractive index dispersion under conditions of electromagnetically induced transparency or coherent population oscillations is presented. It is shown that a considerable amount of experimental evidence for observation of the 'slow light' is not related to the low group velocity of light and can be easily interpreted in terms of a standard model of interaction of light with a saturable absorber.Comment: 17 pages, 8 figures, to be published in June issue of Phisics: Uspekhi under the title "Notes on Slow Light

    Spin noise of itinerant fermions

    Full text link
    We develop a theory of spin noise spectroscopy of itinerant, noninteracting, spin-carrying fermions in different regimes of temperature and disorder. We use kinetic equations for the density matrix in spin variables. We find a general result with a clear physical interpretation, and discuss its dependence on temperature, the size of the system, and applied magnetic field. We consider two classes of experimental probes: 1. electron-spin-resonance (ESR)-type measurements, in which the probe response to a uniform magnetization increases linearly with the volume sampled, and 2. optical Kerr/Faraday rotation-type measurements, in which the probe response to a uniform magnetization increases linearly with the length of the light propagation in the sample, but is independent of the cross section of the light beam. Our theory provides a framework for interpreting recent experiments on atomic gases and conduction electrons in semiconductors and provides a baseline for identifying the effects of interactions on spin noise spectroscopy

    High Bandwidth Atomic Magnetometery with Continuous Quantum Non-demolition Measurements

    Full text link
    We describe an experimental study of spin-projection noise in a high sensitivity alkali-metal magnetometer. We demonstrate a four-fold improvement in the measurement bandwidth of the magnetometer using continuous quantum non-demolition (QND) measurements. Operating in the scalar mode with a measurement volume of 2 cm^3 we achieve magnetic field sensitivity of 22 fT/Hz^(1/2) and a bandwidth of 1.9 kHz with a spin polarization of only 1%. Our experimental arrangement is naturally back-action evading and can be used to realize sub-fT sensitivity with a highly polarized spin-squeezed atomic vapor.Comment: 4 page

    Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation

    Get PDF
    We describe a room-temperature alkali-metal atomic magnetometer for detection of small, high frequency magnetic fields. The magnetometer operates by detecting optical rotation due to the precession of an aligned ground state in the presence of a small oscillating magnetic field. The resonance frequency of the magnetometer can be adjusted to any desired value by tuning the bias magnetic field. We demonstrate a sensitivity of 100pG/Hz(RMS)100\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)} in a 3.5 cm diameter, paraffin coated cell. Based on detection at the photon shot-noise limit, we project a sensitivity of 20pG/Hz(RMS)20\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)}.Comment: 6 pages, 6 figure

    Spin noise in quantum dot ensembles

    Full text link
    We study theoretically spin fluctuations of resident electrons or holes in singly charged quantum dots. The effects of external magnetic field and effective fields caused by the interaction of electron and nuclei spins are analyzed. The fluctuations of spin Faraday, Kerr and ellipticity signals revealing the spin noise of resident charge carriers are calculated for the continuous wave probing at the singlet trion resonance.Comment: 8 pages, 4 figure

    Optical measurements of spin noise as a high resolution spectroscopic tool

    Full text link
    The intrinsic fluctuations of electron spins in semiconductors and atomic vapors generate a small, randomly-varying "spin noise" that can be detected by sensitive optical methods such as Faraday rotation. Recent studies have demonstrated that the frequency, linewidth, and lineshape of this spin noise directly reveals dynamical spin properties such as dephasing times, relaxation mechanisms and g-factors without perturbing the spins away from equilibrium. Here we demonstrate that spin noise measurements using wavelength-tunable probe light forms the basis of a powerful and novel spectroscopic tool to provide unique information that is fundamentally inaccessible via conventional linear optics. In particular, the wavelength dependence of the detected spin noise power can reveal homogeneous linewidths buried within inhomogeneously-broadened optical spectra, and can resolve overlapping optical transitions belonging to different spin systems. These new possibilities are explored both theoretically and via experiments on spin systems in opposite limits of inhomogeneous broadening (alkali atom vapors and semiconductor quantum dots).Comment: 4 pages, 4 figure

    Skin effect with arbitrary specularity in Maxwellian plasma

    Full text link
    The problem of skin effect with arbitrary specularity in maxwellian plasma with specular--diffuse boundary conditions is solved. A new analytical method is developed that makes it possible to to obtain a solution up to an arbitrary degree of accuracy. The method is based on the idea of symmetric continuation not only the electric field, but also electron distribution function. The solution is obtained in a form of von Neumann series.Comment: 7 pages, 2 figure

    Quantum, Multi-Body Effects and Nuclear Reaction Rates in Plasmas

    Full text link
    Detailed calculations of the contribution from off-shell effects to the quasiclassical tunneling of fusing particles are provided. It is shown that these effects change the Gamow rates of certain nuclear reactions in dense plasma by several orders of magnitude.Comment: 11 pages; change of content: added clarification of one of the important steps in the derivatio

    Noise spectroscopy and interlayer phase-coherence in bilayer quantum Hall systems

    Full text link
    Bilayer quantum Hall systems develop strong interlayer phase-coherence when the distance between layers is comparable to the typical distance between electrons within a layer. The phase-coherent state has until now been investigated primarily via transport measurements. We argue here that interlayer current and charge-imbalance noise studies in these systems will be able to address some of the key experimental questions. We show that the characteristic frequency of current-noise is that of the zero wavevector collective mode, which is sensitive to the degree of order in the system. Local electric potential noise measured in a plane above the bilayer system on the other hand is sensitive to finite-wavevector collective modes and hence to the soft-magnetoroton picture of the order-disorder phase transition.Comment: 5 pages, 2 figure
    corecore