11,762 research outputs found

    Nonlinear phase shift from photon-photon scattering in vacuum

    Get PDF
    We show that QED nonlinear effects imply a phase correction to the linear evolution of electromagnetic waves in vacuum. We provide explicit solutions of the modified Maxwell's equations for the propagation of a superposition of two plane waves, and calculate analytically and numerically the corresponding phase shift. This provides a new framework for the search of all-optical signatures of photon-photon scattering in vacuum. In particular, we propose an experiment for measuring the phase shift in projected high-power laser facilities.Comment: 4 pages, 1 figure. Some references were added, and the comparison with AC Kerr effect has been improve

    Hydromagnetic Instability in plane Couette Flow

    Full text link
    We study the stability of a compressible magnetic plane Couette flow and show that compressibility profoundly alters the stability properties if the magnetic field has a component perpendicular to the direction of flow. The necessary condition of a newly found instability can be satisfied in a wide variety of flows in laboratory and astrophysical conditions. The instability can operate even in a very strong magnetic field which entirely suppresses other MHD instabilities. The growth time of this instability can be rather short and reach ∼10\sim 10 shear timescales.Comment: 6 pages, 5 figures. To appear on PR

    Spin noise in quantum dot ensembles

    Full text link
    We study theoretically spin fluctuations of resident electrons or holes in singly charged quantum dots. The effects of external magnetic field and effective fields caused by the interaction of electron and nuclei spins are analyzed. The fluctuations of spin Faraday, Kerr and ellipticity signals revealing the spin noise of resident charge carriers are calculated for the continuous wave probing at the singlet trion resonance.Comment: 8 pages, 4 figure

    High-growth-rate magnetohydrodynamic instability in differentially rotating compressible flow

    Full text link
    The transport of angular momentum in the outward direction is the fundamental requirement for accretion to proceed in an accretion disc. This objective can be achieved if the accretion flow is turbulent. Instabilities are one of the sources for the turbulence. We study a differentially rotating compressive flow in the presence of non vanishing radial and azimuthal magnetic field and demonstrate the occurrence of a high growth rate instability. This instability operates in a region where magnetic energy density exceeds the rotational energy density

    Observation of ground-state quantum beats in atomic spontaneous emission

    Full text link
    We report ground-state quantum beats in spontaneous emission from a continuously driven atomic ensemble. Beats are visible only in an intensity autocorrelation and evidence spontaneously generated coherence in radiative decay. Our measurement realizes a quantum eraser where a first photon detection prepares a superposition and a second erases the "which-path" information in the intermediate state.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Letter

    Quantum, Multi-Body Effects and Nuclear Reaction Rates in Plasmas

    Full text link
    Detailed calculations of the contribution from off-shell effects to the quasiclassical tunneling of fusing particles are provided. It is shown that these effects change the Gamow rates of certain nuclear reactions in dense plasma by several orders of magnitude.Comment: 11 pages; change of content: added clarification of one of the important steps in the derivatio

    Time-Symmetric Quantum Theory of Smoothing

    Full text link
    Smoothing is an estimation technique that takes into account both past and future observations, and can be more accurate than filtering alone. In this Letter, a quantum theory of smoothing is constructed using a time-symmetric formalism, thereby generalizing prior work on classical and quantum filtering, retrodiction, and smoothing. The proposed theory solves the important problem of optimally estimating classical Markov processes coupled to a quantum system under continuous measurements, and is thus expected to find major applications in future quantum sensing systems, such as gravitational wave detectors and atomic magnetometers.Comment: 4 pages, 1 figure, v2: accepted by PR

    Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation

    Get PDF
    We describe a room-temperature alkali-metal atomic magnetometer for detection of small, high frequency magnetic fields. The magnetometer operates by detecting optical rotation due to the precession of an aligned ground state in the presence of a small oscillating magnetic field. The resonance frequency of the magnetometer can be adjusted to any desired value by tuning the bias magnetic field. We demonstrate a sensitivity of 100 pG/Hz (RMS)100\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)} in a 3.5 cm diameter, paraffin coated cell. Based on detection at the photon shot-noise limit, we project a sensitivity of 20 pG/Hz (RMS)20\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)}.Comment: 6 pages, 6 figure

    Probing photo-ionization: simulations of positive streamers in varying N2:O2 mixtures

    Get PDF
    Photo-ionization is the accepted mechanism for the propagation of positive streamers in air though the parameters are not very well known; the efficiency of this mechanism largely depends on the presence of both nitrogen and oxygen. But experiments show that streamer propagation is amazingly robust against changes of the gas composition; even for pure nitrogen with impurity levels below 1 ppm streamers propagate essentially with the same velocity as in air, but their minimal diameter is smaller, and they branch more frequently. Additionally, they move more in a zigzag fashion and sometimes exhibit a feathery structure. In our simulations, we test the relative importance of photo-ionization and of the background ionization from pulsed repetitive discharges, in air as well as in nitrogen with 1 ppm O2 . We also test reasonable parameter changes of the photo-ionization model. We find that photo- ionization dominates streamer propagation in air for repetition frequencies of at least 1 kHz, while in nitrogen with 1 ppm O2 the effect of the repetition frequency has to be included above 1 Hz. Finally, we explain the feather-like structures around streamer channels that are observed in experiments in nitrogen with high purity, but not in air.Comment: 12 figure

    Nonlinear magneto-optical resonances at D1 excitation of 85Rb and 87Rb in an extremely thin cell

    Full text link
    Nonlinear magneto-optical resonances have been measured in an extremely thin cell (ETC) for the D1 transition of rubidium in an atomic vapor of natural isotopic composition. All hyperfine transitions of both isotopes have been studied for a wide range of laser power densities, laser detunings, and ETC wall separations. Dark resonances in the laser induced fluorescence (LIF) were observed as expected when the ground state total angular momentum F_g was greater than or equal to the excited state total angular momentum F_e. Unlike the case of ordinary cells, the width and contrast of dark resonances formed in the ETC dramatically depended on the detuning of the laser from the exact atomic transition. A theoretical model based on the optical Bloch equations was applied to calculate the shapes of the resonance curves. The model averaged over the contributions from different atomic velocity groups, considered all neighboring hyperfine transitions, took into account the splitting and mixing of magnetic sublevels in an external magnetic field, and included a detailed treatment of the coherence properties of the laser radiation. Such a theoretical approach had successfully described nonlinear magneto-optical resonances in ordinary vapor cells. Although the values of certain model parameters in the ETC differed significantly from the case of ordinary cells, the same physical processes were used to model both cases. However, to describe the resonances in the ETC, key parameters such as the transit relaxation rate and Doppler width had to be modified in accordance with the ETC's unique features. Agreement between the measured and calculated resonance curves was satisfactory for the ETC, though not as good as in the case of ordinary cells.Comment: v2: substantial changes and expanded theoretical model; 13 pages, 10 figures; accepted for publication in Physical Review
    • …
    corecore