27 research outputs found

    Natriuretic peptides and their usefulness in clinical practise

    Get PDF
    Natriuretic peptides are peptic hormones produced by atrial and ventricular myocytes, and by endothelium of blood vessels, that take part in homeostatic control of water and sodium levels, but also potassium transport, lipolysis in adipocytes and blood pressure regulation.   Three different natriuretic peptides are distinguished: atrial natriuretic peptide (ANP), b-type natriuretic peptide (BNP) and c-type natriuretic peptide (CNP). Those peptides are responsible mostly for water-sodium homeostasis and regulation of blood pressure. Levels of natriuretic peptides increase significantly in diseases and disorders such as congestive heart failure and pulmonary hypertension, that is why natriuretic peptides were found useful in diagnosis and monitoring of said diseases. In clinical practise, BNP and NT-proBNP levels are mostly used.  

    Policy implementation and priorities to create healthy food environments using the Healthy Food Environment Policy Index (Food-EPI): A pooled level analysis across eleven European countries

    Get PDF
    Background: Food environments have been recognised as highly influential on population diets. Government policies have great potential to create healthy food environments to promote healthy diets. This study aimed to evaluate food environment policy implementation in European countries and identify priority actions for governments to create healthy food environments. Methods: The Healthy Food Environment Policy Index (Food-EPI) was used to evaluate the level of food environment policy and infrastructure support implementation in Estonia, Finland, Germany, Ireland, Italy, the Netherlands, Norway, Poland, Portugal, Slovenia, and Spain in 2019–2021. Evidence of implementation of food environment policies was compiled in each country and validated by government officials. National experts evaluated the implementation of policies and identified priority recommendations. Findings: Finland had the highest proportion (32%, n = 7/22) of policies shaping food environments with a “high” level of implementation. Slovenia and Poland had the highest proportion of policies rated at very low implementation (42%, n = 10/24 and 36%, n = 9/25 respectively). Policies regarding food provision, promotion, retail, funding, monitoring, and health in all policies were identified as the most important gaps across the European countries. Experts recommended immediate action on setting standards for nutrients of concern in processed foods, improvement of school food environments, fruit and vegetable subsidies, unhealthy food and beverage taxation, and restrictions on unhealthy food marketing to children. Interpretation: Immediate implementation of policies and infrastructure support that prioritize action towards healthy food environments is urgently required to tackle the burden of obesity and diet-related non-communicable diseases in Europe. Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 774548 and from the Joint Programming Initiative “A Healthy Diet for a Healthy Life”

    hTERT Downregulation Attenuates Resistance to DOX, Impairs FAK-Mediated Adhesion, and Leads to Autophagy Induction in Breast Cancer Cells

    No full text
    Telomerase is known to contribute to telomere maintenance and to provide cancer cell immortality. However, numerous reports are showing that the function of the enzyme goes far beyond chromosome ends. The study aimed to explore how telomerase downregulation in MCF7 and MDA-MB-231 breast cancer cells affects their ability to survive. Consequently, sensitivity to drug resistance, proliferation, and adhesion were assessed. The lentiviral-mediated human telomerase reverse transcriptase (hTERT) downregulation efficiency was performed at gene expression and protein level using qPCR and Western blot, respectively. Telomerase activity was evaluated using the Telomeric Repeat Amplification Protocol (TRAP) assay. The study revealed that hTERT downregulation led to an increased sensitivity of breast cancer cells to doxorubicin which was demonstrated in MTT and clonogenic assays. During a long-term doubling time assessment, a decreased population doubling level was observed. Interestingly, it did not dramatically affect cell cycle distribution. hTERT downregulation was accompanied by an alteration in β1-integrin- and by focal adhesion kinase (FAK)-driven pathways together with the reduction of target proteins phosphorylation, i.e., paxillin and c-Src. Additionally, autophagy activation was observed in MDA-MB-231 cells manifested by alternations in Atg5, Beclin 1, LC3II/I ratio, and p62. These results provide new evidence supporting the possible therapeutic potential of telomerase downregulation leading to induction of autophagy and cancer cells elimination

    Cytotoxic Effect of Phenylethanoid Glycosides Isolated from <i>Plantago lanceolata</i> L.

    No full text
    The aim of the study is to investigate whether the bioactive compounds isolated from P. lanceolata inflorescences, namely, phenylethanoid glucosides, acteoside, plantamajoside, and a flavonoid, isorhamnetin-3-O-rutinoside-4′-O-glucoside, possessed cytotoxic activity against the selected cancer cell lines. The potential antitumor effects of two phenylethanoid glycosides and one flavonoid were evaluated via MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on seven human carcinoma cell lines (MCF-7, MDA-MB-231, Caco-2, HepG2, OVCAR-3, U138-MG, U251-MG) and one nontumorigenic mammary epithelial cell line (MCF-12A). For the first time, acteoside was studied in ovarian cancer cell line OVCAR-3, and plantamajoside in all cell lines except breast adenocarcinoma MDA-MB-281 and hepatocarcinoma HepG2. The phenylethanoid glycosides showed stronger cytotoxic activity than that of the glycoside flavonoid. Acteoside and plantamajoside, at concentrations of 200 and 300 μM, respectively, had a highly toxic effect on the selected two cancer cell lines of breast adenocarcinoma MDA-MB-231 and MCF-7, ovarian cancer cell line OVCAR-3, glioblastoma cell line U138-MG, and hepatocarcinoma cell line HepG2. Both glycosides were significantly less cytotoxic towards nontumorigenic cell line MCF-12A; the effect appeared at a concentration of 400 μM. For the first time, the activity of acteoside and plantamajoside was compared in one parallel investigation. The results are discussed against a broad background of existing knowledge on biological effects, their mechanisms, and structure–activity relationships. Phenylethanoids may be potential compounds with cytotoxic activity against the selected cancer types

    Drug-induced dyskinesias, can they be prevented?

    No full text
    Introduction: Dyskinesia is a symptom complex in the form of involuntary, repetitive movements of lips, lower jaw, tongue, less often the trunk and limbs. Despite the use of newer drugs in treatment neuroleptics, dyskinesia has not ceased to be a clinical problem

    Deep brain stimulation (DBS) in resistant mental disorders

    No full text
    Introduction: Deep Brain Stimulation can directly alter brain activity in a controlled manner and the effect is reversible. The mechanism is that the electrode acts locally on neural activity, which is transferred to monosynchronous and multisynaptic network connections

    Telomerase Inhibitor TMPyP4 Alters Adhesion and Migration of Breast-Cancer Cells MCF7 and MDA-MB-231

    No full text
    Human telomeres were one of the first discovered and characterized sequences forming quadruplex structures. Association of these structures with oncogenic and tumor suppressor proteins suggests their important role in cancer development and therapy efficacy. Since cationic porphyrin TMPyP4 is known as G-quadruplex stabilizer and telomerase inhibitor, the aim of the study was to analyze the anticancer properties of this compound in two different human breast-cancer MCF7 and MDA-MB-231 cell lines. The cytotoxicity of TMPyP4 alone or in combination with doxorubicin was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromid) and clonogenic assays, and the cell-cycle alterations were analyzed by flow cytometry. Telomerase expression and activity were evaluated using qPCR and telomeric repeat amplification protocol (TRAP) assays, respectively. The contribution of G-quadruplex inhibitor to protein pathways engaged in cell survival, DNA repair, adhesion, and migration was performed using immunodetection. Scratch assay and functional assessment of migration and cell adhesion were also performed. Consequently, it was revealed that in the short term, TMPyP4 neither revealed cytotoxic effect nor sensitized MCF7 and MDA-MB-231 to doxorubicin, but altered breast-cancer cell adhesion and migration. It suggests that TMPyP4 might substantially contribute to a significant decrease in cancer cell dissemination and, consequently, cancer cell survival reduction. Importantly, this effect might not be associated with telomeres or telomerase

    Diversity of Biodeteriorative Bacterial and Fungal Consortia in Winter and Summer on Historical Sandstone of the Northern Pergola, Museum of King John III’s Palace at Wilanow, Poland

    No full text
    The aim of the presented investigation was to describe seasonal changes of microbial community composition in situ in different biocenoses on historical sandstone of the Northern Pergola in the Museum of King John III&rsquo;s Palace at Wilanow (Poland). The microbial biodiversity was analyzed by the application of Illumina-based next-generation sequencing methods. The metabarcoding analysis allowed for detecting lichenized fungi taxa with the clear domination of two genera: Lecania and Rhinocladiella. It was also observed that, during winter, the richness of fungal communities increased in the biocenoses dominated by lichens and mosses. The metabarcoding analysis showed 34 bacterial genera, with a clear domination of Sphingomonas spp. across almost all biocenoses. Acidophilic bacteria from Acidobacteriaceae and Acetobacteraceae families were also identified, and the results showed that a significant number of bacterial strains isolated during the summer displayed the ability to acidification in contrast to strains isolated in winter, when a large number of isolates displayed alkalizing activity. Other bacteria capable of nitrogen fixation and hydrocarbon utilization (including aromatic hydrocarbons) as well as halophilic microorganisms were also found. The diversity of organisms in the biofilm ensures its stability throughout the year despite the differences recorded between winter and summer
    corecore