8 research outputs found
Internal flows and energy circulation in light beams
We review optical phenomena associated with the internal energy
redistribution which accompany propagation and transformations of monochromatic
light fields in homogeneous media. The total energy flow (linear-momentum
density, Poynting vector) can be divided into spin part associated with the
polarization and orbital part associated with the spatial inhomogeneity. We
give general description of the internal flows in the coordinate and momentum
(angular spectrum) representations for both nonparaxial and paraxial fields.
This enables one to determine local densities and integral values of the spin
and orbital angular momenta of the field. We analyse patterns of the internal
flows in standard beam models (Gaussian, Laguerre-Gaussian, flat-top beam,
etc.), which provide an insightful picture of the energy transport. The
emphasize is made to the singular points of the flow fields. We describe the
spin-orbit and orbit-orbit interactions in the processes of beam focusing and
symmetry breakdown. Finally, we consider how the energy flows manifest
themselves in the mechanical action on probing particles and in the
transformations of a propagating beam subjected to a transverse perturbation.Comment: 50 pages, 21 figures, 173 references. This is the final version of
the manuscript (v1) modified in accord to the referee's remarks and with
allowance for the recent development. The main changes are: additional
discussion of the energy flows in Bessel beams (section 4.1), a lot of new
references are added and the Conclusion is shortened and made more accurat
Media 4: Internal energy flows and instantaneous field of a monochromatic paraxial light beam
Originally published in Applied Optics on 01 April 2012 (ao-51-10-C13
Media 3: Internal energy flows and instantaneous field of a monochromatic paraxial light beam
Originally published in Applied Optics on 01 April 2012 (ao-51-10-C13
Media 1: Internal energy flows and instantaneous field of a monochromatic paraxial light beam
Originally published in Applied Optics on 01 April 2012 (ao-51-10-C13
Media 2: Internal energy flows and instantaneous field of a monochromatic paraxial light beam
Originally published in Applied Optics on 01 April 2012 (ao-51-10-C13
Review on the structured light properties:rotational features and singularities
The review exposes basic concepts and manifestations of the singular and structured light fields. The presentation is based on deep intrinsic relations between the singularities and the rotational phenomena in light; it involves essentially the dynamical aspects of light fields and their interactions with matter. Due to their topological nature, the singularities of each separate parameter (phase, polarization, energy flow, etc.) form coherent interrelated systems (singular networks), and the meaningful interconnections between the different singular networks are analysed. The main features of singular-light structures are introduced via generic examples of the optical vortex and circular vortex beams. The review describes approaches for generation and diagnostics of different singular networks and underlines the role of singularities in formation of optical field structures. The mechanical action of structured light fields on material objects is discussed on the base of the spin-orbital (canonical) decomposition of electromagnetic momentum, expressing the special roles of the spin (polarization) and spatial degrees of freedom. Experimental demonstrations spectacularly characterize the topological nature and the immanent rotational features of the light-field singularities. The review is based on the results obtained by its authors with a special attention to relevant works of other researchers