5 research outputs found

    Disjoint Dominating Sets with a Perfect Matching

    Full text link
    In this paper, we consider dominating sets DD and D′D' such that DD and D′D' are disjoint and there exists a perfect matching between them. Let DDm(G)DD_{\textrm{m}}(G) denote the cardinality of smallest such sets D,D′D, D' in GG (provided they exist, otherwise DDm(G)=∞DD_{\textrm{m}}(G) = \infty). This concept was introduced in [Klostermeyer et al., Theory and Application of Graphs, 2017] in the context of studying a certain graph protection problem. We characterize the trees TT for which DDm(T)DD_{\textrm{m}}(T) equals a certain graph protection parameter and for which DDm(T)=α(T)DD_{\textrm{m}}(T) = \alpha(T), where α(G)\alpha(G) is the independence number of GG. We also further study this parameter in graph products, e.g., by giving bounds for grid graphs, and in graphs of small independence number

    An Eternal Domination Problem in Grids

    Get PDF
    A dynamic domination problem in graphs is considered in which an infinite sequence of attacks occur at vertices with mobile guards; the guard at the attacked vertex is required to vacate the vertex by moving to a neighboring vertex with no guard. Other guards are allowed to move at the same time, and before and after each attack, the vertices containing guards must form a dominating set of the graph. The minimum number of guards that can defend the graph against such an arbitrary sequence of attacks is called the m-eviction number of the graph. In this paper, the m-eviction number is determined exactly for m×nm \times n grids with m≤4m \leq 4 and upper bounds are given for all n≥m≥8n \geq m \geq 8

    An Eternal Domination Problem in Grids

    Get PDF
    A dynamic domination problem in graphs is considered in which an infinite sequence of attacks occur at vertices with mobile guards; the guard at the attacked vertex is required to vacate the vertex by moving to a neighboring vertex with no guard. Other guards are allowed to move at the same time, and before and after each attack, the vertices containing guards must form a dominating set of the graph. The minimum number of guards that can defend the graph against such an arbitrary sequence of attacks is called the m-eviction number of the graph. In this paper, the m-eviction number is determined exactly for m×nm \times n grids with m≤4m \leq 4 and upper bounds are given for all n≥m≥8n \geq m \geq 8
    corecore