13 research outputs found

    Effect of intracerebroventricular injection of GABA receptors antagonists on morphine-induced changes in GABA and GLU transmission within the mPFC: An in vivo microdialysis study

    Get PDF
    Objective(s): Many studies have focused on ventral tegmental area than of other mesocorticolimbic areas, and implicated a key role for the medial prefrontal cortex (mPFC) in the development of addictive behaviors. So far, the role of gamma-aminobutyric acid (GABA) receptors in the discriminative properties of morphine has received little attention and few studies evaluated the role of these receptors in drug dependence. Hence, we investigated the role of this receptor on morphine- induced GABA/ glutamate (GLU) changes in the mPFC following morphine administration using in vivo microdialysis.Materials and Methods: In this study, 60 rats weighing 270-300 g were divided into six groups. First, microdialysis probe was inserted into the mPFC and was perfused with artificial cerebrospinal fluid and collected the baseline samples in all groups. In saline and morphine groups, the saline, in phaclophen and (phaclofen+morphine) groups, phaclofen (100 nmol), and in bicuculline and (bicuculline+morphine) groups, bicuculline (20 nmol) was injected intracerebroventricular. In saline, phaclofen and bicuculline groups 20 min later, animals received saline (0.2 ml, IP) and others groups received morphine (20 mg/kg, IP).Results: Our results showed that morphine increased the average concentration of GABA and decreased the concentration of GLU within mPFC. Pretreatment with phaclofen and bicuculline 20 min before morphine administration had no effect on GABA and GLU release for 100 min.Conclusion: The present study indicated that morphine influence the GABA and GLU transmission in mPFC. Therefore evaluation of neurochemistry changes of this neural circuitry may provide further insight into the mechanisms underlying drug dependence

    Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe

    No full text
    In the present study, a facile method is used for preparation of functionalized graphene nanoplatelets (f-GNP) nanofluids. The effective thermal conductivity, density, viscosity, specific heat capacity, overall heat transfer coefficient and friction factor for fully developed turbulent flow of f-GNP/water nanofluids flowing through a square pipe at a constant heat flux were studied. f-GNP uniform nanocomposite was produced from a simple acid treatment reaction procedure. The surface characterization was performed by various techniques such as XRD, FESEM, FTIR and Raman. The f-GNP nanofluids were prepared by dispersing the functionalized nanoparticles in base fluid (water) without the assistance of a surfactant. As made nanofluids were stable for a long time and no sedimentation was observed. The experimental data for f-GNP nanofluids have shown significant enhancement in thermal conductivity and overall heat transfer coefficient in comparison to the corresponding water data. The percentage of enhancement is a function of weight concentration of nanoparticles and temperature. Highest improvement of overall heat transfer coefficient is 19.68% with 9.22% raise in friction factor for the weight concentration of 0.1% at a Reynolds number of 17,500 compared to those data from the base fluid

    Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer

    No full text
    In the present experimental work, a new synthesis method is introduced for decoration of silver on the functionalized graphene nanoplatelets (GNP-Ag) and preparation of nanofluids is reported. The thermo-physical properties, heat transfer performance and friction factor for fully developed turbulent flow of GNP-Ag/water nanofluids flowing through a circular tube at a constant heat flux were investigated. GNP-Ag uniform nanocomposite was produced from a simple chemical reaction procedure, which includes acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEM, TEM and Raman. The GNP-Ag nanofluids were prepared by dispersing the nanocomposite in distilled water without the assistance of a surfactant and/or ultrasonication. The prepared nanofluids were found to be stable and no sedimentation was observed for a long time. The experimental data for GNP-Ag nanofluids were shown improvements of effective thermal conductivity and heat transfer efficiency in comparison with the corresponding to the base-fluid. The amount of enhancement was a function of temperature and weight concentration of nanoparticles. Maximum enhancement of Nusselt number was 32.7% with a penalty of 1.08 times increase in the friction factor for the weight concentration of 0.1% at a Reynolds number of 17,500 compared to distilled water. Improved empirical correlations were proposed based on the experimental data for evaluation of Nusselt number and friction factor

    Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid

    No full text
    In the present study a new synthesis method has been introduced for the decoration of platinum (Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEM and TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfactant. The examined nanofluids were stable and no significant sedimentation was observed for a long time (22 days). Thermal conductivity of GNP–Pt nanocomposite dispersed in distilled water nanofluids shows an enhancement of 17.77% at 40 °C and 0.1% weight concentration
    corecore